第二章 矩阵

1.3 坐标空间中的子空间

定义 1.14 设 U 是 \mathbb{R}^n 中的非空子集. 如果对任意 $\mathbf{x}, \mathbf{y} \in U$ 和 $\alpha \in \mathbb{R}$,

- (i) (加法封闭性) $\mathbf{x} + \mathbf{y} \in U$,
- (ii) (数乘封闭性) $\alpha \mathbf{x} \in U$.

则称 U 是 \mathbb{R}^n 中的子空间 (subspace).

例 1.15 坐标空间 \mathbb{R}^n 有两个平凡的子空间 $\{0\}$ 和 \mathbb{R}^n .

例 1.16 设 $U \in \mathbb{R}^n$ 的子空间. 则 $\mathbf{0} \in U$.

证明. 设 $\mathbf{x} \in U$. 则 $\mathbf{0} = 0\mathbf{x} \in U$. \square

1.3.1 基本性质

命题 1.17 设 U 是 \mathbb{R}^n 中的非空子集. 则下列命题等价.

- (i) U 是子空间;
- (ii) U 中任意两个向量的线性组合仍在 U 中;
- (iii) 对任意 $\mathbf{u}_1, \dots, \mathbf{u}_k \in U, \mathbf{u}_1, \dots, \mathbf{u}_k$ 的任意线性组合 都在 U 中.

证明. "(i) \Longrightarrow (ii)" 设 \mathbf{x}, \mathbf{y} 是 U 中任意的两个向量, α, β 是任意两个实数. 如果 U 是子空间, 则 $\alpha \mathbf{x}, \beta \mathbf{y} \in U$ (数乘封闭性). 从而 $\alpha \mathbf{x} + \beta \mathbf{y} \in U$ (加法封闭性). 反之, 设 $\alpha \mathbf{x} + \beta \mathbf{y} \in U$. 取 $\alpha = \beta = 1$ 得到加法封闭性, 取 $\beta = 0$ 得到数乘封闭性. 故 U 是子空间.

"(ii) \Longrightarrow (iii)" 当 k=1,2 时, (ii) 蕴含 $\mathbf{u}_1,\mathbf{u}_2$ 的所有线性组合都在 U 中. 设 k>2 时且 U 中任何 k-1 个向量的线性组合都在 U 中. 对任意 $\alpha_1,\ldots,\alpha_{k-1},\alpha_k\in\mathbb{R}$, $\mathbf{u}_1,\ldots,\mathbf{u}_{k-1},\mathbf{u}_k\in U$, 我们有

$$\sum_{i=1}^{k} \alpha_i \mathbf{u}_i = \left(\sum_{i=1}^{k-1} \alpha_i \mathbf{u}_i\right) + \alpha_k \mathbf{u}_k \in U.$$

"(iii) ⇒ (i)" 由线性组合的定义直接得出. □

例 1.18 设 $\mathbf{v} \in \mathbb{R}^n$. 则 $\{\lambda \mathbf{v} \mid \lambda \in \mathbb{R}\}$ 是子空间. 设 $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. 则 $\{\alpha \mathbf{x} + \beta \mathbf{y} \mid \alpha, \beta \in \mathbb{R}\}$ 是子空间.

例 1.19 设 $A \in \mathbb{R}^{m \times n}$, 其对应的 n 元齐次线性方程组记为 H. 验证 sol(H) 是 \mathbb{R}^n 中的子空间.

证明. (参照见第一次作业习题 4) 设

$$\mathbf{v} = \begin{pmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{pmatrix}, \quad \mathbf{w} = \begin{pmatrix} \beta_1 \\ \vdots \\ \beta_n \end{pmatrix}$$

是H的两个解.则

$$\alpha_1 \vec{A}^{(1)} + \dots + \alpha_n \vec{A}^{(n)} = \mathbf{0}_m, \quad \beta_1 \vec{A}^{(1)} + \dots + \beta_n \vec{A}^{(n)} = \mathbf{0}_m.$$

$$\mathbf{u} = \begin{pmatrix} \lambda \alpha_1 + \mu \beta_1 \\ \vdots \\ \lambda \alpha_1 + \mu \beta_n \end{pmatrix}.$$

而

$$\sum_{j=1}^{n} (\lambda \alpha_j + \mu \beta_j) \vec{A}^{(j)} = \lambda \left(\sum_{j=1}^{n} \alpha_j \vec{A}^{(j)} \right) + \mu \left(\sum_{j=1}^{n} \beta_j \vec{A}^{(j)} \right) = \mathbf{0}_m.$$

故 $\mathbf{u} \in \operatorname{sol}(H)$. 根据命题 1.17, $\operatorname{sol}(H)$ 是子空间. \square

例 1.20 设 $p, q \in \mathbb{Q}$ 不全为零,

$$S = \left\{ \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \mid p\alpha + q\beta = 0, \alpha, \beta \in \mathbb{Q} \right\}.$$

S 是否是 \mathbb{R}^n 的子空间?

答. 不是. 因为

$$\begin{pmatrix} -q \\ p \end{pmatrix} \in S \quad \text{de } \sqrt{2} \begin{pmatrix} -q \\ p \end{pmatrix} \notin S. \quad \Box$$

1.3.2 子空间的交与和

命题 1.21 设 Λ 是一个指标集, 对任意 $\lambda \in \Lambda$, U_{λ} 是 \mathbb{R}^{n} 中的子空间. 则 $\bigcap_{\lambda \in \Lambda} U_{\lambda}$ 也是子空间.

证明. 设 $\mathbf{v}, \mathbf{w} \in \bigcap_{\lambda \in \Lambda} U_{\lambda}, \, \alpha, \beta \in \mathbb{R}$. 因为 $\mathbf{v}, \mathbf{w} \in U_{\lambda}$, 所以 $\alpha \mathbf{v} + \beta \mathbf{w} \in U_{\lambda}$ (命题 1.17). 由此可知, $\alpha \mathbf{v} + \beta \mathbf{w} \in \bigcap_{\lambda \in \Lambda} U_{\lambda}$. 故 $\bigcap_{\lambda \in \Lambda} U_{\lambda}$ 是子空间 (命题 1.17). \square

例 1.22 考虑齐次线性方程组 H

$$\begin{cases} a_{1,1}x_1 + \dots + a_{1,n}x_n = 0 \\ \vdots \\ a_{m,1}x_1 + \dots + a_{m,n}x_n = 0 \end{cases}$$

设 $V_i = \text{sol}(a_{i,1}x_1 + \dots + a_{i,n}x_n = 0), i = 1, 2, \dots, m.$ 则 $\text{sol}(H) = \bigcap_{i=1}^m V_i.$ □

设 S_1, \ldots, S_k 是 \mathbb{R}^n 的非空子集. 我们定义 S_1, \ldots, S_k 的和为

$$S_1 + \cdots + S_k := \{ \mathbf{v}_1 + \cdots + \mathbf{v}_k | \mathbf{v}_1 \in S_1, \dots, \mathbf{v}_k \in S_k \}.$$

命题 1.23 设 U_1, \ldots, U_k 是 \mathbb{R}^n 的子空间. 则 $U_1 + \cdots + U_k$ 也是子空间.

证明. 设 $\mathbf{x}, \mathbf{y} \in \sum_{i=1}^k U_i$. 则存在 $\mathbf{u}_i, \mathbf{v}_i \in U_i, i = 1, 2, \dots, k$, 使得 $\mathbf{x} = \sum_{i=1}^k \mathbf{u}_i$ 和 $\mathbf{y} = \sum_{i=1}^k \mathbf{v}_i$. 则对任意 $\alpha, \beta \in \mathbb{R}$,

$$\alpha \mathbf{x} + \beta \mathbf{y} = \alpha \left(\sum_{i=1}^k \mathbf{u}_i \right) + \beta \left(\sum_{i=1}^k \mathbf{v}_i \right) = \sum_{i=1}^k (\alpha \mathbf{u}_i + \beta \mathbf{v}_i).$$

根据命题 1.17, $\alpha \mathbf{u}_i + \beta \mathbf{v}_i \in U_i$, i = 1, 2, ..., k. 我们得到 $\alpha \mathbf{x} + \beta \mathbf{y} \in \sum_{i=1}^k U_i$. 故 $\sum_{i=1}^k U_i$ 是子空间. \square

例 1.24 设 U_1, \ldots, U_k 是 \mathbb{R}^n 的子空间. 证明

$$U_i \subset U_1 + \cdots + U_k, \quad i = 1, \ldots, n.$$

证明. 不妨证明 $U_1 \subset U_1 + \cdots + U_k$. 注意到

$$U_1 = \{\mathbf{u}_1 + \underbrace{\mathbf{0} + \cdots + \mathbf{0}}_{k-1} \mid \mathbf{u}_1 \in U_1\} \subset U_1 + \cdots + U_k. \quad \Box$$

例 1.25 设 $U, V \in \mathbb{R}^n$ 的子空间. 如果 $U \subsetneq V$ 且 $V \subsetneq U$, 则 $U \cup V$ 不是子空间.

证明. 假设 $U \cup V$ 是子空间. 设 $\mathbf{x} \in U \setminus V$ 和 $\mathbf{y} \in V \setminus U$. 则 $\mathbf{x} + \mathbf{y} \in U \cup V$. 不妨设 $\mathbf{x} + \mathbf{y} \in U$. 则

$$\mathbf{y} = (\mathbf{x} + \mathbf{y}) - \mathbf{x} \in U.$$

矛盾. □

1.3.3 线性流形

定义 1.26 设 $\mathbf{v} \in \mathbb{R}^n$ 和 $U \neq \mathbb{R}^n$ 的子空间. 则 $\{\mathbf{v}\} + U$ 简记为 $\mathbf{v} + U$. 称为一个线性流形.

例 1.27 设 $B \in \mathbb{R}^{m \times (n+1)}$, $L \neq B$ 对应的 n 元线性方程组, $H \neq B$ 的前 n 列组成矩阵对应的齐次线性方程组. 如

果 L 相容,则 $sol(L) = \mathbf{v} + sol(H)$,其中 $\mathbf{v} \neq L$ 的一个解.特别地, sol(L) 是线性流形.

证明. 设 $M = \mathbf{v} + \operatorname{sol}(H)$ 且 $\mathbf{w} \in M$. 则存在 $\mathbf{z} \in \operatorname{sol}(H)$ 使 得 $\mathbf{w} = \mathbf{v} + \mathbf{z}$. 令

$$\mathbf{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}, \quad \mathbf{z} = \begin{pmatrix} z_1 \\ \vdots \\ z_n \end{pmatrix}.$$

则

$$\mathbf{w} = \begin{pmatrix} v_1 + z_1 \\ \vdots \\ v_n + z_n \end{pmatrix}.$$

我们计算

$$\sum_{i=1}^{n} (v_i + z_i) \vec{B}^{(i)} = \sum_{i=1}^{n} v_i \vec{B}^{(i)} + \sum_{i=1}^{n} z_i \vec{B}^{(i)} = \vec{B}^{(n+1)}.$$

于是, $\mathbf{w} \in \operatorname{sol}(L)$. 由此可知, $M \subset \operatorname{sol}(L)$. 再设:

$$\mathbf{w} = \begin{pmatrix} w_1 \\ \vdots \\ w_n \end{pmatrix} \in \operatorname{sol}(L).$$

则 $\mathbf{w} = \mathbf{v} + (\mathbf{w} - \mathbf{v})$. 我们计算

$$\sum_{i=1}^{n} (w_i - v_i) \vec{B}^{(i)} = \sum_{i=1}^{n} w_i \vec{B}^{(i)} - \sum_{i=1}^{n} v_i \vec{B}^{(i)} = \vec{B}^{(n+1)} - \vec{B}^{(n+1)} = \mathbf{0}_m.$$

故 $\mathbf{w} - \mathbf{v} \in \operatorname{sol}(H)$. 我们有 $\operatorname{sol}(L) \subset M$. 故 $\operatorname{sol}(L) = M$. 再根据上一讲例 1.18, $\operatorname{sol}(L)$ 是线性流形. \square

引理 1.28 设线性流形 $M = \mathbf{x} + U = \mathbf{y} + V$, 其中 $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$, $U, V 是 \mathbb{R}^n$ 的子空间. 则 U = V 且 $\mathbf{x} - \mathbf{y} \in U$.

证明. 因为 $\mathbf{x} + \mathbf{0} \in M$, 所以存在 $\mathbf{v} \in V$ 使得 $\mathbf{x} = \mathbf{y} + \mathbf{v}$. 于是, $\mathbf{x} - \mathbf{y} \in V$. 类似可知 $\mathbf{y} - \mathbf{x} \in U$. 我们得到

$$\pm(\mathbf{x} - \mathbf{y}) \in U \cap V. \tag{1}$$

设 $\mathbf{u} \in U$. 则 $\mathbf{x} + \mathbf{u} \in M$. 于是, 存在 $\mathbf{v} \in V$ 使得

$$x + u = y + v$$
.

由 (1) 可知, $\mathbf{u} = (\mathbf{y} - \mathbf{x}) + \mathbf{v}$. 故 $\mathbf{u} \in V$. 我们得到 $U \subset V$. 同理 $V \subset U$. 故 U = V. 进而, $\mathbf{x} - \mathbf{y} \in U \cap V = U$. \square

设线性流形 $M = \mathbf{x} + U$, 其中 $\mathbf{x} \in \mathbb{R}^n$ 和 $U \in \mathbb{R}^n$ 的子空间. 我们称 $U \in \mathbb{R}^n$ 的方向.

注解 1.29 一个线性流形是子空间当且仅当它含有零向量. 这是因为该流形可以写成零向量和它的方向之和.

1.3.4 子空间的生成

定义 1.30 设 $S \neq \mathbb{R}^n$ 的非空子集.则由 S 中元素的所有线性组合构成的集合称为由 S 生成的子空间.记为 $\langle S \rangle$.集合 S 中的元素称为子空间 $\langle S \rangle$ 的一组生成元.

命题 1.31 设 $S \in \mathbb{R}^n$ 的非空子集.

- (i) $\langle S \rangle$ 是子空间;
- (ii) 设 U 是 \mathbb{R}^n 的子空间且 $S \subset U$. 则 $\langle S \rangle \subset U$.

证明. (i) 设 $\mathbf{x}, \mathbf{y} \in \langle S \rangle$. 则存在 $\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{v}_1, \dots, \mathbf{v}_\ell \in S$, $\alpha_1, \dots, \alpha_k, \beta_1, \dots, \beta_\ell \in \mathbb{R}$ 使得

$$\mathbf{x} = \sum_{i=1}^k \alpha_i \mathbf{u}_i \quad \mathbf{f} \quad \mathbf{y} = \sum_{j=1}^\ell \beta_j \mathbf{v}_j.$$

则对任意 $\lambda, \mu \in \mathbb{R}$, 我们有

$$\lambda \mathbf{x} + \mu \mathbf{y} = \lambda \left(\sum_{i=1}^k \alpha_i \mathbf{u}_i \right) + \mu \left(\sum_{j=1}^\ell \beta_j \mathbf{v}_j \right) = \sum_{i=1}^k (\lambda \alpha_i) \mathbf{u}_i + \sum_{j=1}^\ell (\mu \beta_j) \mathbf{v}_j.$$

故 $\lambda \mathbf{x} + \mu \mathbf{y} \in \langle S \rangle$. 根据命题 1.18 $\langle S \rangle$ 是子空间.

(ii) 因为 $S \subset U$, 所以 $\langle S \rangle \subset U$ (命题 1.18). \square 当 S 是有限集 $\{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ 时, $\langle S \rangle$ 也记作 $\langle \mathbf{v}_1, \ldots, \mathbf{v}_k \rangle$.

例 1.32 设 $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$. 则

$$\langle \mathbf{v} \rangle = \{ \lambda \mathbf{v} \mid \lambda \in \mathbb{R} \} \quad \forall \mathbf{u}, \mathbf{v} \rangle = \{ \alpha \mathbf{u} + \beta \mathbf{v} \mid \alpha, \beta \in \mathbb{R} \}.$$

例 1.33 设 $\mathbf{e}_1, \mathbf{e}_2 \in \mathbb{R}^2$,

$$V_1 = \langle \mathbf{e}_1 \rangle, \ V_2 = \langle \mathbf{e}_2 \rangle \not \Leftrightarrow V_3 = \langle \mathbf{e}_1 + \mathbf{e}_2 \rangle.$$

计算 $(V_1 + V_2) \cap V_3$ 和 $V_1 \cap V_3 + V_2 \cap V_3$. 解. 注意到 $V_1 + V_2 = \langle \mathbf{e}_1, \mathbf{e}_2 \rangle = \mathbb{R}^2$. 故 $(V_1 + V_2) \cap V_3 = V_3$. 而 $V_1 \cap V_3 = V_2 \cap V_3 = \{\mathbf{0}\}$. 我们有

$$V_1 \cap V_3 + V_2 \cap V_3 = \{\mathbf{0}\} + \{\mathbf{0}\} = \{\mathbf{0}\}.$$

例 1.34 设 $U, W \in \mathbb{R}^n$ 中的子空间. 则 $U+W = \langle U \cup W \rangle$. 证明. 显然 $U \cup W \subset U + W$. 根据命题 1.31 (ii),

$$\langle U \cup W \rangle \subset U + W$$
.

反之,设 $\mathbf{x} \in U + W$. 则存在 $\mathbf{u} \in U$ 和 $\mathbf{w} \in W$ 使得 $\mathbf{x} = \mathbf{u} + \mathbf{w}$. 于是, $\mathbf{x} \in \langle U \cup W \rangle$, 即 $U + W \subset \langle U \cup W \rangle$. \square

例 1.35 线性组合引理可重述为: 设 $\mathbf{v}_1, \ldots, \mathbf{v}_k; \mathbf{w}_1, \ldots, \mathbf{w}_\ell$ 是 \mathbb{R}^n 中的两组向量. 设对任意 $j \in \{1, 2, \ldots, \ell\}$,

$$\mathbf{w}_i \in \langle \mathbf{v}_1, \dots, \mathbf{v}_k \rangle.$$

如果 $\ell > k$, 则 $\mathbf{w}_1, \ldots, \mathbf{w}_\ell$ 线性相关.

1.3.5 子空间的直和

定义 1.36 设 $U, V \in \mathbb{R}^n$ 的子空间. 如果 $U \cap V = \{0\}$, 则 称 U + V 是直和. 记为 $U \oplus V$.

命题 1.37 设 $U, V \in \mathbb{R}^n$ 中子空间. 则 U+V 是直和当且 仅当对任意 $\mathbf{x} \in U+V$, 存在唯一的 $\mathbf{u} \in U$, $\mathbf{v} \in V$ 使得

$$x = u + v$$
.

证明. 设U+V是直和且 $\mathbf{x} \in U+V$. 设

$$\mathbf{x} = \mathbf{u} + \mathbf{v} = \mathbf{u}' + \mathbf{v}',$$

其中 $\mathbf{u}, \mathbf{u}' \in U, \mathbf{v}, \mathbf{v}' \in V$. 则

$$\mathbf{u} - \mathbf{u}' = \mathbf{v}' - \mathbf{v} \implies \mathbf{u} - \mathbf{u}' \in U \cap V.$$

因为 $U \cap V = \{0\}$, 所以 $\mathbf{u} = \mathbf{u}'$. 进而 $\mathbf{v} = \mathbf{v}'$.

反之, 假设 U + V 不是直和. 则存在非零向量 $\mathbf{x} \in U \cap V$. 故 $\mathbf{0} = \mathbf{0} + \mathbf{0} = \mathbf{x} + (-\mathbf{x})$. 与要求的唯一性矛盾. \square

2 子空间的基底和维数

2.1 极大线性无关组

 \mathbf{M} 2.1 设 $\mathbf{u}_1, \ldots, \mathbf{u}_m \in \mathbb{R}^n$ 且 m > n. 则 $\mathbf{u}_1, \ldots, \mathbf{u}_m$ 线性相关.

证明. 因为 $\mathbf{u}_1, \ldots, \mathbf{u}_m$ 都是 $\mathbf{e}_1, \ldots, \mathbf{e}_n$ 的线性组合, 所以根据线性组合引理和 m > n 可知, $\mathbf{u}_1, \ldots, \mathbf{u}_m$ 线性相关. \square

定义 2.2 设 $S \subset \mathbb{R}^n$. 有限非空子集 $T \subset S$ 称为 S 的一个极大线性无关组. 如果

- (i) T 中的向量线性无关;
- (ii) 对任意 $\mathbf{v} \in S$, $\mathbf{v} \in \langle T \rangle$.

注解 2.3 如果 S 的一个极大线性无关组 $T = \{\mathbf{u}_1, \dots, \mathbf{u}_d\}$. 我们经常略去集合符号简称 $\mathbf{u}_1, \dots, \mathbf{u}_d$ 是 S 的一个极大线性无关组.

命题 **2.4** 设 $S \subset \mathbb{R}^n$.

- (i) (可扩充性) 设 $\mathbf{u}_1, \ldots, \mathbf{u}_k$ 是 S 中线性无关的向量. 则存在 S 中极大线性无关组且它包含 $\mathbf{u}_1, \ldots, \mathbf{u}_k$.
- (ii) (等势性) 设 $\mathbf{v}_1, \dots, \mathbf{v}_\ell \in S$ 线性无关, $\mathbf{w}_1, \dots, \mathbf{w}_m$ 是 S 的极大线性无关组.则 $\mathbf{v}_1, \dots, \mathbf{v}_\ell$ 是 S 的极大线性 无关组当且仅当 $\ell = m$.

证明. (i) 如果对任意 $\mathbf{u} \in S$, $\mathbf{u}, \mathbf{u}_1, \dots, \mathbf{u}_k$ 线性相关, 则 $\mathbf{u} \in \langle \mathbf{u}_1, \dots, \mathbf{u}_k \rangle$ (第五讲命题 1.11 (iv)). 于是, $\{\mathbf{u}_1, \dots, \mathbf{u}_k\}$ 是 S 中的一个极大线性无关组且它包含 $\mathbf{u}_1, \dots, \mathbf{u}_k$. 否则, 存在 $\mathbf{u}_{k+1} \in S$ 使得 $\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{u}_{k+1}$ 线性无关. 对向量 $\mathbf{u}_1, \dots, \mathbf{u}_k, \mathbf{u}_{k+1}$ 重复上述推理过程, 我们要么得出

$$\{\mathbf{u}_1,\ldots,\mathbf{u}_k,\mathbf{u}_{k+1}\}$$

是 S 的极大线性无关组, 要么证明存在向量 $\mathbf{u}_{k+2} \in S$ 使得 $\mathbf{u}_1, \ldots, \mathbf{u}_k, \mathbf{u}_{k+1}, \mathbf{u}_{k+2}$ 线性无关. 由例 2.1 可知,S 中不可能有 n+1 个线性无关的向量. 故上述推理过程重复有限步后, 我们就会得到一个 S 中的极大线性无关组且它包含 $\mathbf{u}_1, \ldots, \mathbf{u}_k$.

(ii) 设 $\mathbf{v}_1, \ldots, \mathbf{v}_\ell$ 是 S 的极大线性无关组. 因为

$$\mathbf{w}_1,\ldots,\mathbf{w}_m\in\langle\mathbf{v}_1,\ldots,\mathbf{v}_\ell\rangle,$$

所以 $m \le \ell$ (线性组合引理). 同理可知, $\ell \le m$.

反之, 设 $\ell = m$. 由(i)可知, S有一个极大线性无关组

$$\mathbf{v}_1,\ldots,\mathbf{v}_m,\mathbf{v}_{m+1},\ldots,\mathbf{v}_{m+s}$$

由极大线性无关组的定义可知 $\mathbf{v}_i \in \langle \mathbf{w}_1, \dots, \mathbf{w}_m \rangle$, i = 1, $2, \dots, m + s$. 假设 s > 0. 根据线性组合引理, $\mathbf{v}_1, \dots, \mathbf{v}_m$, $\mathbf{v}_{m+1}, \dots, \mathbf{v}_{m+s}$ 线性相关, 矛盾. 故 s = 0. 即 $\mathbf{v}_1, \dots, \mathbf{v}_m$ 是 S 的极大线性无关组. \square

注解 2.5 由上述命题可知, 任何含有非零向量的集合必有极大线性无关组.

例 2.6 向量 $\mathbf{e}_1, \ldots, \mathbf{e}_n$ 是 \mathbb{R}^n 的一组极大线性无关组.

例 2.7 证明 $\mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}_3, \dots, \mathbf{e}_n$ 是 \mathbb{R}^n 的一个极大线性无关组.

证明. 设 $\alpha_1, \alpha_2, \alpha_3, \ldots, \alpha_n \in \mathbb{R}$ 使得

$$\alpha_1(\mathbf{e}_1 + \mathbf{e}_2) + \alpha_2(\mathbf{e}_1 - \mathbf{e}_2) + \alpha_3\mathbf{e}_3 + \dots + \alpha_n\mathbf{e}_n = \mathbf{0}.$$

则

$$(\alpha_1 + \alpha_2)\mathbf{e}_1 + (\alpha_1 - \alpha_2)\mathbf{e}_2 + \alpha_3\mathbf{e}_3 + \dots + \alpha_n\mathbf{e}_n = \mathbf{0}.$$

因为 $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ 线性无关,所以 $\alpha_1 + \alpha_2 = 0$, $\alpha_1 - \alpha_2 = 0$, $\alpha_3 = 0, \dots, \alpha_n = 0$. 故 $\alpha_1 = \alpha_2 = 0$. 于是,

$$\mathbf{e}_1 + \mathbf{e}_2, \mathbf{e}_1 - \mathbf{e}_2, \mathbf{e}_3, \dots, \mathbf{e}_n$$

线性无关. 由命题 2.4 (ii) 可知, $\mathbf{e}_1 + \mathbf{e}_2$, $\mathbf{e}_1 - \mathbf{e}_2$, \mathbf{e}_3 , ..., \mathbf{e}_n 是 \mathbb{R}^n 的一个极大线性无关组.

2.2 子空间的基底

定义 2.8 设 $U \subset \mathbb{R}^n$ 是子空间且 $U \neq \{0\}$. 向量集

$$\{\mathbf{u}_1,\ldots\mathbf{u}_d\}\subset U$$

称为 U 的一组基, 如果对任意 $\mathbf{u} \in U$, 存在唯一的

$$\alpha_1, \ldots, \alpha_d \in \mathbb{R},$$

使得 $\mathbf{u} = \alpha_1 \mathbf{u}_1 + \cdots + \alpha_d \mathbf{u}_d$.

如注解 2.3 所述, 当 $\{\mathbf{u}_1, \dots \mathbf{u}_d\}$ 是子空间 U 的一组基时, 我们也简称 $\mathbf{u}_1, \dots, \mathbf{u}_d$ 是 U 的一组基.

命题 2.9 设 $U \subset \mathbb{R}^n$ 是子空间且 $U \neq \{0\}$. 向量集

$$\{\mathbf u_1, \dots \mathbf u_d\}$$

是U的一组基当且仅当该向量集是U的极大线性无关组.

证明. 设 $\{\mathbf{u}_1, \dots, \mathbf{u}_d\}$ 是 U 的基. 再设 $\alpha_1, \dots, \alpha_d \in \mathbb{R}$ 使得 $\alpha_1 \mathbf{u}_1 + \dots + \alpha_d \mathbf{u}_d = \mathbf{0}.$

由基底定义可知, $\alpha_1 = \cdots = \alpha_d = \mathbf{0}$. 故 $\mathbf{u}_1, \ldots, \mathbf{u}_d$ 线性无关. 再由基底定义中条件 (ii) 可知, $\mathbf{u}_1, \ldots, \mathbf{u}_d$ 是 U 的极大线性无关组.

反之,设 $\mathbf{u}_1, \dots \mathbf{u}_d$ 是 U 的一个极大线性无关组. 根据第五讲命题 1.11 (iv), $\mathbf{u}_1, \dots \mathbf{u}_d$ 是 U 的一组基. \square

由例 2.6 可知, $\mathbf{e}_1, \ldots, \mathbf{e}_n$ 是 \mathbb{R}^n 中的一组基. 称之为 \mathbb{R}^n 的标准基.

推论 2.10 设 $S \subset \mathbb{R}^n$ 包含非零向量.则 S 中的极大线性 无关组是 $\langle S \rangle$ 的一组基.

证明. 设 $\mathbf{u}_1, \ldots, \mathbf{u}_d$ 是 S 的一个极大线性无关组. 则

$$S \subset \langle \mathbf{u}_1, \dots, \mathbf{u}_d \rangle$$
.

由第五讲命题 1.25, $\langle S \rangle \subset \langle \mathbf{u}_1, \dots, \mathbf{u}_d \rangle$. 而另一个方向的包含关系是显然的. 于是, $\langle S \rangle = \langle \mathbf{u}_1, \dots, \mathbf{u}_d \rangle$. 即 $\mathbf{u}_1, \dots, \mathbf{u}_d$ 是 $\langle S \rangle$ 的极大线性无关组. 根据上述命题, $\mathbf{u}_1, \dots, \mathbf{u}_d$ 是 $\langle S \rangle$ 的一组基. \square

例 2.11 设

$$\mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \quad \mathbf{z} = \begin{pmatrix} 5 \\ 1 \\ 6 \end{pmatrix}.$$

求 $\langle \mathbf{x}, \mathbf{y}, \mathbf{z} \rangle$ 的一组基.

解. 根据上述推论, 我们只要求出 {x,y,z} 中的一个极大线性无关组即可.

$$(\mathbf{x}, \mathbf{y}) = \begin{pmatrix} 1 & 1 \\ 2 & -1 \\ 3 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 \\ 0 & -3 \\ 0 & -3 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 1 \\ 0 & -3 \\ 0 & 0 \end{pmatrix}.$$

于是,以矩阵 (x,y) 为系数矩阵的齐次线性方程组只有平凡解.故 x,y 线性无关.由第二章第一讲例 1.9, x,y,z 线性相关.故 x,y 是 $\langle x,y,z\rangle$ 的一组基. 类似地可知, x,z和 y,z 都是 $\langle x,y,z\rangle$ 的基

定理 2.12 (基扩充定理) 设 $\mathbf{u}_1, \ldots, \mathbf{u}_k$ 是子空间 U 中线性无关的向量. 则 U 有一组基包含 $\mathbf{u}_1, \ldots, \mathbf{u}_k$.

证明. 根据命题 2.4 (i), U 中有极大线性无关组包含 $\mathbf{u}_1, \ldots, \mathbf{u}_k$. 再根据上述命题, 该极大线性无关组是 U 的一组基. \square

2.3 维数

定义 2.13 设 U 是 \mathbb{R}^n 中的子空间. 如果 $\mathbf{u}_1, \ldots, \mathbf{u}_d$ 是 U 的一组基,则 U 的维数 (dimension)定义为 d. 当 $U = \{\mathbf{0}\}$ 时,其维数定义为 0. 该维数记为 $\dim(U)$.

根据命题 2.4 (ii) 和命题 2.9, 子空间维数是良定义的. 因为 坐标空间 \mathbb{R}^n 有标准基 $\mathbf{e}_1, \ldots, \mathbf{e}_n$, 所以 $\dim(\mathbb{R}^n) = n$.

命题 2.14 设 $U, W \in \mathbb{R}^n$ 的两个子空间且 $U \subset W$. 则 $\dim(U) \leq \dim(W)$. 进而, U=W 当且仅当 $\dim(U) = \dim(W)$.

证明. 设 $\mathbf{u}_1, \dots, \mathbf{u}_d$ 是 U 的一组基. 由假设 $U \subset W$ 和基扩充定理 2.12, W 有一组基包含 $\mathbf{u}_1, \dots, \mathbf{u}_d$. 故 $\dim(U) \leq \dim(W)$.

再设 $d = \dim(W)$. 则 $\mathbf{u}_1, \dots, \mathbf{u}_d$ 也是 W 的基 (命题 2.4 (ii)). 故 $W \subset \langle u_1, \dots, u_d \rangle = U$. \square

命题 2.15 设 $U, W \in \mathbb{R}^n$ 的两个子空间. 则

$$\dim(U+W) + \dim(U\cap W) = \dim(U) + \dim(W).$$

证明. 令 $\mathbf{v}_1, \dots, \mathbf{v}_k$ 是 $U \cap W$ 的一组基. 由基扩充定理, U 有基底 $\mathbf{v}_1, \dots, \mathbf{v}_k, \mathbf{u}_{k+1}, \dots, \mathbf{u}_{k+\ell}$; W 有基底 $\mathbf{v}_1, \dots, \mathbf{v}_k, \mathbf{v}_{k+1}, \dots, \mathbf{v}_{k+m}$.

断言. $S = \{\mathbf{v}_1, \dots, \mathbf{v}_k, \mathbf{u}_{k+1}, \dots, \mathbf{u}_{k+\ell}, \mathbf{w}_{k+1}, \dots, \mathbf{w}_{k+m}\}$ 是 U + W的一组基.

断言的证明. 设 $\alpha_1, \ldots, \alpha_k, \beta_1, \ldots, \beta_\ell, \gamma_1, \ldots, \gamma_m \in \mathbb{R}$ 使得

$$\alpha_1 \mathbf{v}_1 + \dots + \alpha_k \mathbf{v}_k + \beta_1 \mathbf{u}_{k+1} + \dots + \beta_\ell \mathbf{u}_{k+\ell} + \underbrace{\gamma_1 \mathbf{w}_{k+1} + \dots + \gamma_m \mathbf{w}_{k+m}}_{\mathbf{w}} = \mathbf{0}.$$

则 $\mathbf{w} \in U \cap W$. 于是, 存在 $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$ 使得

$$\mathbf{w} = \lambda_1 \mathbf{v}_1 + \dots + \lambda_k \mathbf{v}_k.$$

即

$$(-\gamma_1)\mathbf{w}_1 + \cdots + (-\gamma_m)\mathbf{w}_m + \lambda_1\mathbf{v}_1 + \cdots + \lambda_k\mathbf{v}_k = \mathbf{0}.$$

因为 $\mathbf{w}_1, \ldots, \mathbf{w}_m, \mathbf{v}_1, \ldots, \mathbf{v}_k$ 线性无关, 所以

$$\gamma_1 = \cdots = \gamma_m = 0.$$

故

$$\alpha_1 \mathbf{v}_1 + \cdots + \alpha_k \mathbf{v}_k + \beta_1 \mathbf{u}_{k+1} + \cdots + \beta_\ell \mathbf{u}_{k+\ell} = \mathbf{0}.$$

因为 $\mathbf{u}_1, \dots, \mathbf{u}_\ell, \mathbf{v}_1, \dots, \mathbf{v}_k$ 线性无关, 所以 $\alpha_1 = \dots = \alpha_k = \beta_1 = \dots = \beta_\ell = 0$. 于是, S 中的向量线性无关.

再设 $\mathbf{x} \in U + W$. 则存在 $\mathbf{y} \in U$ 和 $\mathbf{z} \in W$ 使得 $\mathbf{x} = \mathbf{y} + \mathbf{z}$. 因为 $\mathbf{y} \notin \mathbf{v}_1, \dots, \mathbf{v}_k, \mathbf{u}_{k+1}, \dots, \mathbf{u}_{k+\ell}$ 的线性组合, $\mathbf{z} \notin \mathbf{v}_1, \dots, \mathbf{v}_k, \mathbf{w}_{k+1}, \dots, \mathbf{w}_{k+m}$ 的线性组合. 故 $\mathbf{x} \notin S$ 中的向量的线性组合. 即 $S \notin U + W$ 的一个极大线性无关组. 根据命题 2.9, 断言成立.

由断言可知 $\dim(U+W) = k + \ell + m$. 因为

$$\dim(U \cap W) = k, \dim(U) = k + \ell, \dim(W) = k + m,$$

所以

$$\dim(U+W) + \dim(U\cap W) = \dim(U) + \dim(W). \quad \Box$$

注解 2.16 在上述命题证明中, 当 $U \cap W = \{0\}$, 则集合 $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ 是空集, 即 k = 0.

例 2.17 设 $U, W \subset \mathbb{R}^n$ 是子空间, $\dim(U) = d > 0$, $\dim(W) = n - 1$. 证明 $\dim(U \cap W) \ge d - 1$.

证明. 由维数公式可知:

$$\dim(U\cap W) = \dim(U) + \dim(W) - \dim(U+W)$$

$$\geq d+n-1-n \quad (\because \dim(U+W) \leq n)$$

$$= d-1.$$

例 2.18 设 $U,W \subset \mathbb{R}^n$ 是子空间. 证明 V+W 是直和当且仅当 $\dim(V+W) = \dim(V) + \dim(W)$. 证明. 由维数公式可知

$$\dim(V+W) = \dim(V) + \dim(W)$$

$$\iff \dim(U \cap W) = 0$$

$$\iff U \cap W = \{\mathbf{0}\}. \quad \Box$$