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We generalize the notions of ordinary points and singularities 
from linear ordinary differential equations to D-finite systems. 
Ordinary points and apparent singularities of a D-finite system 
are characterized in terms of its formal power series solutions. 
We also show that apparent singularities can be removed like in 
the univariate case by adding suitable additional solutions to the 
system at hand. Several algorithms are presented for removing and 
detecting apparent singularities. In addition, an algorithm is given 
for computing formal power series solutions of a D-finite system 
at apparent singularities.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Linear ordinary differential equations allow easy access to the singularities of their solutions: every 
point α which is a singularity of some solution f of a differential equation must be a zero of the co-
efficient of the highest order derivative appearing in the equation, or a singularity of one of the other 
coefficients. For example, x−1 is a solution of the equation xf ′(x) + f (x) = 0, and the singularity at 0
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is reflected by the root of the polynomial x in front of the term f ′(x) in the equation. Unfortunately, 
the converse is not true: there may be roots of the leading coefficient which do not indicate solutions 
that are singular there. For example, all the solutions of the equation xf ′(x) − 5 f (x) = 0 are constant 
multiples of x5, and none of these functions is singular at 0.

For a differential equation p0(x) f (x) +· · ·+ pr(x) f (r)(x) = 0 with polynomial coefficients p0, . . . , pr

and pr �= 0, the roots of pr are called the singularities of the equation. Those roots α of pr such that 
the equation has no solution that is singular at α are called apparent. In other words, a root α of pr

is apparent if the differential equation admits r linearly independent formal power series solutions 
in x − α. Deciding whether a singularity is apparent is therefore the same as checking whether the 
equation admits a fundamental system of formal power series solutions at this point. This can be 
done by inspecting the so-called indicial polynomial of the equation at α: if there exists a power 
series solution of the form (x − α)� + c�+1(x − α)�+1 + · · · , then � is a root of this polynomial.

When some singularity α of an ODE is apparent, then it is always possible to construct a second 
ODE whose solution space contains all the solutions of the first ODE, and which does not have α
as a singularity. This process is called desingularization. The idea can be easily explained as follows. 
The key observation is that a point α is not a singularity if and only if the indicial polynomial at α
is equal to n(n − 1) · · · (n − r + 1) and the ODE admits r linearly independent formal power series 
solutions in x − α. As the indicial polynomial at an apparent singularity has only nonnegative integer 
roots, we can bring it into the required form by adding a finite number of new factors. Adding a 
factor n − s to the indicial polynomial amounts to adding a solution of the form (x − α)s + · · · to the 
solution space, and this is an easy thing to do using well-known arithmetic of differential operators. 
See Abramov et al. (2006); Barkatou and Maddah (2015); Chen et al. (2016); Ince (1926); Jaroschek 
(2013) for an expanded version of this argument and Abramov et al. (2006); Abramov and van Hoeij 
(1999); Barkatou and Jaroschek (2018) for analogous algorithms for recurrence equations.

The purpose of the present paper is to generalize the two facts sketched above to the multivariate 
setting. Instead of a linear ODE, we consider a special class of systems of linear PDEs known as 
D-finite systems. For such systems, we define the notion of a singularity in terms of the polynomials 
appearing in them (Definition 3.1). We show in Theorem 3.7 that a point is a singularity of the system 
unless it admits a basis of formal power series solutions in which the starting terms are as small as 
possible with respect to some term order. Then a singularity is apparent if the system admits a full 
basis of power series solutions, the starting terms of which are not as small as possible. We then 
prove in Theorem 4.7 that apparent singularities can be removed like in the univariate case by adding 
suitable additional solutions to the system at hand. The operators in the resulting system will be 
contained in the Weyl closure of the original ideal, but unlike Tsai (2000) we cannot prove that 
they form a basis of the Weyl closure. Based on Theorems 3.7 and 4.7, we show how to remove a 
given apparent singularity (Algorithms 5.11 and 5.21), and how to detect whether a given point is an 
apparent singularity (Algorithm 5.14). At last, we present an algorithm for computing formal power 
series solutions of a D-finite system at apparent singularities. Part of materials in this paper was 
presented in the PhD thesis of the fourth author (Zhang, 2017).

2. Preliminaries

In this section, we recall some notions and results concerning linear partial differential operators, 
Gröbner bases, formal power series, solution spaces and Wronskians for D-finite systems. We also 
specify notation to be used in the rest of this paper.

2.1. Rings of differential operators

Throughout the paper, N stands for the set of non-negative integers and Z+ for the set of positive 
integers. For a finite set S , its cardinality is denoted by |S|. For a vector (v1, . . . , vn), its transpose 
is denoted by (v1, . . . , vn)t . We assume that K is a field of characteristic zero. For instance, K is the 
field of complex numbers. Moreover, 0 denotes the zero vector of a finite-dimensional vector space.

Let K[x] = K[x1, . . . , xn] be the ring of usual commutative polynomials over K. The quotient field 
of K[x] is denoted by K(x). The ring of differential operators with rational function coefficients is denoted 
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by K(x)[∂1, . . . , ∂n], in which addition is coefficient-wise and multiplication is defined by associativity 
via the commutation rules

(i) ∂i∂ j = ∂ j∂i ;

(ii) ∂i f = f ∂i + ∂ f
∂xi

for each f ∈K(x),

where ∂ f
∂xi

is the usual derivative of f with respect to xi , 1 ≤ i, j ≤ n. This ring is an Ore alge-
bra (Chyzak and Salvy, 1998) and denoted by K(x)[∂] for brevity.

Another ring is K[x][∂] := K[x1, . . . , xn][∂1, . . . , ∂n], which is a subring of K(x)[∂]. We call it the 
ring of differential operators with polynomial coefficients or the Weyl algebra (Saito et al., 1999, Sec-
tion 1.1).

A left ideal I in K(x)[∂] is said to be D-finite if the quotient K(x)[∂]/I is a finite-dimensional 
vector space over K(x). The dimension of K(x)[∂]/I as a vector space over K(x) is called the rank
of I and denoted by rank(I). For a subset S of K(x)[∂], the left ideal generated by S is denoted 
by K(x)[∂]S . For instance, let

I = Q(x1, x2)[∂1, ∂2] {∂1 − 1, ∂2 − 1}.
Then I is D-finite because the quotient Q(x1, x2)[∂1, ∂2]/I is a vector space of dimension one over 
Q(x1, x2). Thus, rank(I) = 1.

2.2. Gröbner bases

Gröbner bases in K(x)[∂] are well known (Chyzak and Salvy, 1998, Section 1.5) and implementa-
tions for them are available for example in the Maple package Mgfun by Chyzak (2008) and in the 
Mathematica package HolonomicFunctions.m by Koutschan (2010). We briefly summarize some 
facts about Gröbner bases in K(x)[∂].

We denote by T(∂) the commutative monoid generated by ∂1, . . . , ∂n . An element of T(∂) is called a 
term. For a vector u = (u1, . . . , un) ∈Nn , the symbol ∂u stands for the term ∂

u1
1 · · · ∂un

n , and u is called 
its exponent. The order of ∂u is defined to be |u| := u1 + · · · + un . For a nonzero operator P ∈K(x)[∂], 
the order of P is defined to be the highest order of the terms that appear in P effectively.

Let ≺ be a monomial ordering on Nn (Cox et al., 2015, Definition 1, page 55). Since there is a 
one-to-one correspondence between terms in T(∂) and elements in Nn , the ordering ≺ on Nn induces 
an ordering on T(∂) with ∂u ≺ ∂v if and only if u ≺ v. For brevity, we fix an ordering ≺ on Nn in 
the rest of this paper, and use the graded lexicographic order with ∂1 ≺ · · · ≺ ∂n in examples, unless 
otherwise stated.

For a nonzero element P ∈ K(x)[∂], the head term of P , denoted by HT(P ), is the highest term 
appearing in P . The coefficient of HT(P ) is called the head coefficient of P and is denoted by HC(P ). 
For a subset S of K(x)[∂], we denote by HT(S) and HC(S) the sets of head terms and head coefficients 
of nonzero elements in S , respectively. For a left ideal I ⊂ K(x)[∂], a term is said to be parametric if 
it does not belong to HT(I). The set of exponents of all parametric terms of I is referred to as the set 
of parametric exponents of I and denoted by PE(I). If I is D-finite, then its rank is equal to |PE(I)|.

Given a Gröbner basis G of I , an exponent u belongs to PE(I) if and only if ∂u is not divisible by 
any term in HT(G). We say that G is reduced if HT(g) does not divide any term appearing in g′ for all 
g, g′ ∈ G with g �= g′ .

Let P ∈ K[x][∂] be in the form P = a0∂
u0 + a1∂

u1 + · · · + am∂um , where a0, . . . , am are nonzero 
elements of K[x] and u0, . . . , um are distinct. We say that P is primitive if gcd(a0, a1, . . . , am) = 1. A 
Gröbner basis G in K(x)[∂] is said to be primitive if it is reduced and its elements are primitive in 
K[x][∂]. Every nontrivial left ideal in K(x)[∂] has a primitive Gröbner basis.

Remark 2.1. Assume that G and G ′ are two primitive Gröbner bases of a left ideal. Then HT(G) =
HT(G ′), because both G and G ′ are reduced. For g ∈ G and g′ ∈ G ′ with the same head term, g and 
g′ are linearly dependent over K, because they are primitive.
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2.3. Formal power series

Let K[[x]] be the ring of formal power series in x1, . . . , xn . For an operator P ∈ K[x][∂] and a 
series f ∈ K[[x]], the usual partial derivatives ∂

∂x1
, . . . , ∂

∂xn
induce a natural action of P on f , which 

is denoted by P ( f ). In particular,

P Q ( f ) = P (Q ( f )) (1)

with Q ∈ K[x][∂]. For u = (u1, . . . , un) ∈ Nn , the product (u1!) · · · (un!) is denoted by u!, and xu1
1 · · · xun

n

by xu . A formal power series can always be written in the form

f =
∑

u∈Nn

cu

u! xu,

where cu ∈K. Such a form is convenient for differentiation.
Taking the constant term c0 of a formal power series f gives rise to a ring homomorphism, which 

is denoted by φ. A direct calculation yields

φ
(
∂u( f )

) = cu, (2)

which allows us to determine whether a formal power series is zero by differentiating and taking 
constant terms, as stated in the next lemma.

Lemma 2.2. Let f ∈K[[x]]. Then f = 0 if and only if φ
(
∂u( f )

) = 0 for all u ∈ Nn.

The fixed ordering ≺ on Nn also induces an ordering on the monoid T(x) generated by x1, . . . , xn
in the following manner: xu ≺ xv if and only if u ≺ v. The induced ordering enables us to characterize 
ordinary points of a D-finite ideal by formal power series.

A nonzero element f ∈ K[[x]] can be written as

f = cu

u! xu + higher monomials with respect to ≺,

where cu is a nonzero element of K. We call u the initial exponent of f .
For brevity, we refer to formal power series as power series in the sequel.

2.4. Solutions and Wronskians

We recall some basic facts about solutions of linear partial differential polynomials in Kolchin 
(1973, Chapter IV, Section 5). The first proposition is a special case of Proposition 2 in Kolchin (1973, 
page 152).

Proposition 2.3. For a left ideal I ⊂ K(x)[∂] with rank d, there exists a differential field E containing K[[x]]
such that the set of solutions of I in E is a d-dimensional vector space over CE, where CE stands for the subfield 
of constants in E.

Such differential fields can also be constructed by a Picard-Vessiot approach given in van der Put 
and Singer (2003, Appendix D) or Bronstein et al. (2005). In the rest of this paper, we assume that E
is a differential field as described in the above proposition. For a D-finite ideal I , the solution space 
of I in E is denoted by solE(I).

The next proposition is a differential analog of the Nullstellensatz for D-finite ideals. It is an easy 
consequence of Corollary 1 in Kolchin (1973, page 152).

Proposition 2.4. Let V ⊂ E be a d-dimensional linear subspace over CE . Then there exists a unique left 
ideal I ⊂ E[∂] of rank d such that V = solE(I). Furthermore, an operator P belongs to I if and only if P
annihilates every element of V .
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Linear dependence over the constants can be determined by Wronskian-like determinants (Kolchin, 
1973, Chapter II, Theorem 1), which implies that a finite number of elements in K[[x]] are linearly 
independent over K if and only if they are linearly independent over any field of constants that 
contains K.

Wronskian-like determinants are expressed by elements of T(∂) via wedge notation in Li et al. 
(2002). For v1, v2, . . . , v� ∈Nn and � ∈ Z+ , the exterior product

∂v1 ∧ ∂v2 ∧ · · · ∧ ∂v�

is defined as a CE-multilinear function from E� to E that maps (z1, . . . , z�) ∈ E� to:∣∣∣∣∣∣∣∣∣

∂v1(z1) ∂v1(z2) · · · ∂v1(z�)

∂v2(z1) ∂v2(z2) · · · ∂v2(z�)
...

...
. . .

...

∂v� (z1) ∂v� (z2) · · · ∂v� (z�)

∣∣∣∣∣∣∣∣∣
.

It follows from Theorem 1 in Kolchin (1973, Chapter II) that z1, . . . , z� are linearly independent 
over CE if there exist v1, . . . , v� ∈ Nn such that

(∂v1 ∧ · · · ∧ ∂v� )(z1, . . . , z�) �= 0.

Lemma 2.5. Let f1, . . . f� ∈ K[[x]] be nonzero power series with initial exponents u1, . . . , u� . If u1, . . . , u�

are mutually distinct, then (∂u1 ∧ · · · ∧ ∂u� )( f1, . . . , f�) is invertible in K[[x]]. In particular, f1, . . . , f� are 
linearly independent over K.

Proof. Let g(x) = (∂u1 ∧ · · · ∧ ∂u� )( f1, . . . , f�). Without loss of generality, we assume that u1 ≺ · · · ≺
u� . It follows from (2) that g(0) is an upper triangular determinant whose diagonal consists of the 
respective coefficients of xu1 , . . . , xu� in f1, . . . , f� . So g(0) is a nonzero element of K. Accordingly, 
g(x) is invertible in K[[x]]. �

The following proposition is Lemma 4 by Li et al. (2002) in slightly different notation.

Proposition 2.6. Let I be a D-finite ideal in K(x)[∂] and PE(I) = {u1, . . . , ud}. Let

w I = ∂u1 ∧ · · · ∧ ∂ud .

Assume that z1, . . . , zd ∈ solE(I).

(i) The elements z1, . . . , zd are linearly independent over CE if and only if w I (z1, . . . , zd) is nonzero.
(ii) Let G be a reduced Gröbner basis of I , and ∂v be the head term of an element g of G. Assume further that 

z1, . . . , zd are linearly independent over CE . Set z to be (z1, . . . , zd) and

(w I ∧ ∂v)(z, ·) =

∣∣∣∣∣∣∣∣∣∣∣

∂u1(z1) ∂u1(z2) · · · ∂u1(zd) ∂u1

∂u2(z1) ∂u2(z2) · · · ∂u2(zd) ∂u2

...
...

...
...

∂ud (z1) ∂ud (z2) · · · ∂ud (zd) ∂ud

∂v(z1) ∂v(z2) · · · ∂v(zd) ∂v

∣∣∣∣∣∣∣∣∣∣∣
,

in which the elements of T(∂) are placed on the right-hand side of a product. Then

w I (z)−1 (
w I ∧ ∂v(z, ·)) = HC(g)−1 g.

The above two results will be used to reconstruct a Gröbner basis from its solutions.
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3. Ordinary points and singularities

The goal of this section is to define ordinary points and singularities of a D-finite ideal by primitive 
Gröbner bases, and to characterize ordinary points in terms of power series.

3.1. Ordinary points and singularities

Our definitions of ordinary points and singularities are motivated by the studies of the singular 
locus of a differential system in Saito et al. (1999, page 36).

Definition 3.1. Let I be a D-finite ideal of K(x)[∂], and let G be a primitive Gröbner basis of I . A point 
α ∈ K

n
is called an ordinary point of I with respect to ≺ if none of the elements in HC(G) vanishes at 

α. Otherwise, it is called a singularity of I with respect to ≺.

The above definition is independent of the choices of primitive Gröbner bases by Remark 2.1, and 
it is compatible with that by Abramov et al. (2006) and Chen et al. (2016) in the univariate case. For 
brevity, the phrase “with respect to ≺” will be omitted when we speak about ordinary points and 
singularities, unless we examine them with respect to different orderings.

Example 3.2. Let the D-finite ideal I be generated by G = {∂2 − ∂1, ∂2
1 + 1}, which is a primitive 

Gröbner basis. Since HC(G) = {1}, the ideal I has no singularity.

Example 3.3. Let the D-finite ideal I be generated by the primitive Gröbner basis

G = {x1∂
2
1 − (x1x2 − 1)∂1 − x2, x2∂2 − x1∂1}

in Q(x1, x2)[∂1, ∂2]. Then HC(G) = {x1, x2}. So the singularities of I are the points in {(a, b) ∈ Q
2 | a =

0 or b = 0}. In particular, the origin is a singularity.

The next example illustrates that an ordinary point with respect to a term order may be a singu-
larity with respect to another one. Such singularities are shown to be apparent (see Definition 4.1 and 
Remark 4.4).

Example 3.4. Let G1 = ∂1 + x2∂2 − x2 − 1, G2 = ∂2
2 − 2∂2 + 1 be two linear differential operators in 

K(x1, x2)[∂1, ∂2], and I = K(x1, x2)[∂1, ∂2]{G1, G2}.
Assume that ≺ is the graded lexicographic order with ∂2 ≺ ∂1. Then G1 and G2 form a primitive 

Gröbner basis of I with HC({G1, G2}) = {1}. Thus, every point in K2 is an ordinary point with respect 
to ≺. On the other hand, assume that ≺ is the graded lexicographic order with ∂1 ≺ ∂2. Then {G1, G2}
is also a primitive Gröbner basis of I with respect to ≺. But HC({G1, G2}) = {x2, 1}. So all points on 
the line x2 = 0 are singularities of I with respect to ≺.

3.2. Characterization of ordinary points

From now on, we focus on power series solutions of a D-finite ideal around the origin, as a point 
in Kn can always be translated to the origin, and we may assume that K is algebraically closed when 
necessary. The next proposition is a linear version of the Cauchy-Kawalevskii theorem, which is also 
mentioned in Saito et al. (1999, Theorem 1.4.19). The proof below is based on Wu (1989, Section 11).

Proposition 3.5. Let I be a left ideal of K(x)[∂], and G ⊂ K[x][∂] be a Gröbner basis of I . If none of the 
elements in HC(G) vanishes at the origin, then I has a power series solution in K[[x]] with initial exponent u
for each u ∈ PE(I).
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Proof. For v ∈Nn , let Nv be the normal form of ∂v with respect to G . Then

Nv =
∑

u∈PE(I)

au,v(x)∂u, (3)

with au,v ∈ K(x). Since any element of HC(G) does not vanish at the origin, nor does the denominator 
of au,v(x). It follows that each au,v can be viewed as elements in K[[x]].

We associate to each tuple u ∈ PE(I) an arbitrary constant cu ∈ K. For a non-parametric exponent 
v, set

cv =
∑

u∈PE(I)

au,v(0)cu. (4)

Note that cv is well-defined, since there are only finitely many au,v ’s unequal to zero in (3). Further-
more, let f be the power series 

∑
v∈Nn (cv/v!)xv . We are going to show that f is a solution of I . 

Assume G = {G1, . . . , Gk}. By (1) and Lemma 2.2, it suffices to show the claim that, for all w ∈ Nn and 
i ∈ {1, . . . , k},

φ
(
∂wGi( f )

) = 0, (5)

where φ is the ring homomorphism from K[[x]] to K that takes constant terms, as described in 
Section 2.3.

Set �i = HC(Gi) and ∂vi = HT(Gi) for all i with 1 ≤ i ≤ k. Note that �i(x)−1 ∈ K[[x]] because �i(0) �=
0. Moreover, assume that v1 ≺ · · · ≺ vk .

We proceed by Noetherian induction on S = {
HT(∂wGi) |w ∈ Nn, i ∈ {1, . . . ,k}} according to the 

fixed term ordering. Our starting point is to prove φ(G1( f )) = 0, since ∂v1 is the minimal element 
of S .

Note that ∂v1 = �1(x)−1G1 + Nv1 . By (3), ∂v1 = �1(x)−1G1 + ∑
u∈PE(I) au,v1 (x)∂u . Applying this 

equality to f and then applying φ to the result, we get

cv1 = �1(0)−1φ(G1( f )) +
∑

u∈PE(I)

au,v1(0)cu

by (2). Thus, �1(0)−1φ(G1( f )) = 0 by (4). So φ(G1( f )) = 0. The claim (5) holds for v1.
Let w ∈Nn and let i ∈ {1, . . . , k}. Assume that, for all v ∈ Nn and j ∈ {1, . . . , k},

φ
(
∂vG j( f )

) = 0 (6)

whenever HT(∂vG j) ≺ HT(∂wGi). Reducing ∂w+vi modulo G , we have

∂w+vi = �i(x)−1∂wGi +
⎛
⎝ ∑

HT(∂vG j)≺HT(∂wGi)

pv, j(x)∂vG j

⎞
⎠ + Nw+vi ,

where pv, j(x) ∈ K[[x]]. This is because every term in ∂w+vi − (�i(x))−1(∂wGi) is lower than ∂w+vi

and because none of �1, . . . , �k vanishes at the origin. Letting the above equality act on f , and then 
applying φ to the result, we see that φ

(
∂w+vi ( f )

)
equals

�i(0)−1φ(∂wGi( f )) +
∑

HT(∂vG j)≺HT(∂wGi)

pv, j(0)φ(∂vG j( f )) + φ
(
Nw+vi ( f )

)
.

Then the induction hypothesis (6) implies that

φ
(
∂w+vi ( f )

) = �i(0)−1φ(∂wGi( f )) + φ
(
Nw+vi ( f )

)
.

It follows from (3) that
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φ
(
∂w+vi ( f )

) = �i(0)−1φ(∂wGi( f )) +
∑

u∈PE(I)

au,w+vi (0)φ
(
∂u( f )

)
,

which, together with (2), implies that

cw+vi = �i(0)−1φ(∂wGi( f )) +
∑

u∈PE(I)

au,w+vi (0)cu.

Therefore, �i(0)−1φ(∂wGi( f )) is equal to zero by (4). So is φ(∂wGi( f )). Consequently, the claim given 
in (5) holds.

For each w ∈ PE(I), let fw = ∑
v∈Nn (cv/v!)xv be the power series defined by (4) with cw = 1 and 

cu = 0 for all u ∈ PE(I) \ {w}. Then fw is a solution of I by (5).
It remains to show that w is the initial exponent of fw . Let v ∈ Nn . By the definition of normal 

forms, au,v(x) in (3) is equal to zero whenever u 	 v. It follows that au,v(0) in (4) is equal to zero 
whenever u 	 v. Assume now that v ≺ w. Then the above discussion and (4) imply

cv =
∑

u∈PE(I), u
v

au,v(0)cu,

which is zero in fw , because all the cu ’s in fw are set to be zero whenever u ≺ w. So w is the initial 
exponents of fw according to the induced ordering. �

Note that the left ideal I in the above proposition is not necessarily D-finite. We prove its converse 
under two additional assumptions.

Proposition 3.6. Let I be a D-finite ideal of K(x)[∂], PE(I) = {u1, . . . , ur}, and G be a primitive Gröbner basis 
of I . If, for every j with 1 ≤ j ≤ r, there exists a power series f j ∈ K[[x]] with initial exponent u j such that 
f j ∈ solE(I), then any element of HC(G) does not vanish at the origin.

Proof. Let w I = ∂u1 ∧ · · · ∧ ∂ur and f = ( f1, . . . , fr). Then w I (f) is invertible in K[[x]] by Lemma 2.5. 
Let G = {G1, . . . , Gk}. For all i with 1 ≤ i ≤ k, let

Gi = �i∂
vi +

r∑
j=1

�i j∂
u j ,

where ∂vi = HT(Gi), �i = HC(Gi) and �i j ∈K[x]. Moreover, let Fi = (w I ∧ ∂vi )(f, ·).
By Proposition 2.6, (1/�i)Gi = w I (f)−1 Fi , which, together with (1/�i)Gi ∈K(x)[∂] and w I (f)−1 Fi ∈

K[[x]][∂], implies that �i j/�i ∈ K(x) ∩ K[[x]]. Set �i j/�i = pij/qij , where pij and qij belong to K[x]
with gcd(pij, qij) = 1. Then qij does not vanish at the origin by Theorem 1 in Gessel (1981). Since Gi
is primitive, each �i is a factor of the product of qi1, . . . , qir . Hence, it does not vanish at the origin 
either. �

We are ready to characterize ordinary points in terms of power series.

Theorem 3.7. Let I be a D-finite ideal of K(x)[∂]. Then the origin is an ordinary point of I if and only if I has 
a power series solution with initial exponent u for each u ∈ PE(I).

Proof. Let G be a primitive Gröbner basis of I . If the origin is an ordinary point of I , then any element 
of HC(G) does not vanish at the origin. By Proposition 3.5, I has a power series solution in K[[x]] with 
initial exponent u for each u ∈ PE(G). The converse is immediate from Proposition 3.6. �

The next corollary and example indicate that it appears an optimal choice to define the notion of 
ordinary points via primitive Gröbner bases.
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Corollary 3.8. Let I be a D-finite ideal of K(x)[∂], and G ⊂ K[x][∂] be a Gröbner basis of I . If any element of 
HC(G) does not vanish at the origin, then the origin is an ordinary point of I .

Proof. By Proposition 3.5, I has a power series solution with initial exponent u for each u ∈ PE(I). By 
Theorem 3.7, the origin is an ordinary point of I . �
Example 3.9. Let G1 = x2∂2 + ∂1 and G2 = ∂1 in Q(x1, x2)[∂1, ∂2]. Let I be the left ideal generated by 
G1 and G2. Then {G1, G2} is a Gröbner basis of I , which is not reduced. Although HC(G1) vanishes at 
the origin, the origin is an ordinary point of I because I has a primitive Gröbner basis {∂1, ∂2}.

Theorem 3.7 can also be stated in terms of solution spaces.

Corollary 3.10. Let I be a D-finite ideal of K(x)[∂] with PE(I) = {u1, . . . , ud}. Then the origin is an ordinary 
point of I if and only if there exist f1, . . . , fd ∈ K[[x]] with respective initial exponents u1, . . . , ud such that 
f1, . . . , fd form a CE-basis of solE(I).

Proof. Note that d is the dimension of solE(I) over CE by Proposition 2.3. The corollary is immediate 
from Theorem 3.7 and Lemma 2.5. �
4. Apparent singularities

The goal of this section is to define the notion apparent singularities in the D-finite case, and to 
characterize them by intersections of D-finite ideals.

Definition 4.1. Let I be a D-finite ideal of K(x)[∂] and d = rank(I). Assume that the origin is a singu-
larity of I . We call the origin an apparent singularity of I if I has d linearly independent power series 
solutions in K[[x]].

The above definition is compatible with the univariate case in Abramov et al. (2006, Definition 5).

Example 4.2. Let the left ideal I be generated by the primitive Gröbner basis

G = {x2∂2 + ∂1 − x2 − 1, ∂2
1 − ∂1}

in K(x1, x2)[∂1, ∂2]. Then rank(I) = 2 and HC(G) = {x2, 1}. So the origin is a singularity of I . As I
has two K-linearly independent power series solutions exp(x1 + x2) and x2 exp(x2), the origin is an 
apparent singularity.

Example 4.3. The solution space of the primitive Gröbner basis

G = {x2
2∂2 − x2

1∂1 + x1 − x2, ∂
2
1 }

is generated by {x1 + x2, x1x2}. In this case, HC(G) = {x2
2, 1}. So the origin is an apparent singularity 

of K(x1, x2)[∂1, ∂2]G .

Remark 4.4. Let I be a D-finite ideal of K(x)[∂]. Assume that the origin is an ordinary point with 
respect to the preselected ordering. Then solE(I) has a basis contained in K[[x]]. Hence, the origin is 
an apparent singularity of I if it is a singularity of I with respect to another ordering by Definition 4.1.

For a subset S of K(x)[∂], we denote by IE0(S) the set of initial exponents of nonzero elements 
in solE(S) ∩ K[[x]] and call it the set of initial exponents of S at the origin. Then |IE0(S)| is the 
dimension of solE(S) ∩ K[[x]] by Lemma 2.5. For a D-finite ideal I , the origin is an ordinary point if 
and only if IE0(I) = PE(I) by Theorem 3.7. It is an apparent singularity if and only if IE0(I) �= PE(I)
but |IE0(I)| = |PE(I)| by Definition 4.1.

Before characterizing apparent singularities, we prove two technical lemmas.
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Lemma 4.5. Let I and J be two D-finite ideals in K(x)[∂]. Then

(i) rank(I ∩ J ) + rank(I + J ) = rank(I) + rank( J ).
(ii) dim solE(I ∩ J ) + dim solE(I + J ) = dim solE(I) + dim solE( J ).

(iii) solE(I ∩ J ) = solE(I) + solE( J ).

Proof. By Proposition 10 in Bourbaki (1998, page 207), we have an exact sequence

0 →K(x)[∂]/(I ∩ J ) →K(x)[∂]/I ⊕K(x)[∂]/ J →K(x)[∂]/(I + J ) → 0

of K-linear spaces. The first assertion holds. The second one follows from the first and Proposition 2.3. 
It is evident that solE(I) + solE( J ) ⊂ solE(I ∩ J ). On the other hand,

dim(solE(I) + solE( J )) = dim(solE(I)) + dim(solE( J )) − dim(solE(I) ∩ solE( J )).
= dim(solE(I)) + dim(solE( J )) − dim(solE(I + J ))

(since solE(I) ∩ solE( J ) = solE(I + J ))
= dim(solE(I ∩ J )) (by the second assertion).

Hence, solE(I ∩ J ) = solE(I) + solE( J ). The last assertion holds. �
Our characterization of apparent singularities is based on the fact that there are at most finitely 

many terms lower than a given term. So the fixed monomial ordering ≺ is assumed to be graded from 
now on.

As a matter of notation, we define Nn
m = {u ∈Nn | |u| ≤ m} for m ∈N. The next lemma illustrates a 

connection between parametric exponents and initial ones.

Lemma 4.6. Let J be a D-finite ideal of K(x)[∂]. Assume that solE( J ) has a basis in K[[x]] and IE0( J ) = Nn
m

for some m ∈N. Then PE( J ) =Nn
m. Consequently, the origin is an ordinary point of J .

Proof. Let G be a Gröbner basis of J and J̄ be the left ideal generated by J in E[∂]. Then G is also a 
Gröbner basis of J̄ by Buchberger’s algorithm. It follows that PE( J̄ ) is equal to PE( J ). So it suffices to 
prove PE( J̄ ) =Nn

m .
Assume that f1, . . . f� ∈ K[[x]] form a basis of solE( J ) and their initial exponents are distinct. Then 

� = |Nn
m|. Let f = ( f1, . . . , f�) and w J = ∧

u∈IE0( J ) ∂
u . Then w J (f) is a nonzero element in K[[x]] by 

Lemma 2.5.
For every v ∈ Nn \ Nn

m , we let Fv = (w J ∧ ∂v)(f, ·), which belongs to K[[x]][∂]. Then HT(Fv) = ∂v

because w J (f) is nonzero and the ordering ≺ is graded. Furthermore, Fv vanishes on solE( J ) because 
(w J ∧ ∂v)(f, f i) = 0 for all i with 1 ≤ i ≤ �. It follows from Proposition 2.4 that Fv belongs to J̄ . 
Therefore, ∂v is not a parametric term of J̄ . Accordingly, PE( J̄ ) ⊂ Nn

m . Hence, PE( J̄ ) = Nn
m because 

|PE( J̄ )| = � and � = |Nn
m|. The origin is an ordinary point by Corollary 3.10. �

We are ready to characterize apparent singularities.

Theorem 4.7. Let I be a D-finite ideal of K(x)[∂]. Assume that the origin is a singularity of I . Then the origin 
is an apparent singularity of I if and only if it is an ordinary point of some D-finite ideal contained in I .

Proof. Assume that the origin is an apparent singularity of I . Let m = maxu∈IE0(I) |u|. For every v =
(v1, . . . , vn) ∈ Nn , we denote by Iv the left ideal generated by x1∂1 − v1, . . . , xn∂n − vn in K(x)[∂]. 
Then solE(Iv) is spanned by xv .

Let J = ⋂
v∈Nn

m\IE0(I) Iv . By construction, the two left ideals I and J have no nonzero solution in 
common, which, together with Lemma 4.5 (iii), implies that

solE(I ∩ J ) = solE(I) ⊕ solE( J ).
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In particular, the dimension of solE(I ∩ J ) is equal to |Nn
m|, because solE(I) and solE( J ) have respective 

dimensions |IE0(I)| and |Nn
m| −|IE0(I)|. So IE0(I ∩ J ) =Nn

m . Then the origin is an ordinary point of I ∩ J
by Lemma 4.6.

Conversely, assume that J ⊂ I is a D-finite ideal such that the origin is an ordinary point of J . 
Then solE(I) ⊂ solE( J ).

Assume that { f1, . . . , f�} ⊂K[[x]] is a basis of solE( J ). Since solE(I) is contained in solE( J ), every 
element of solE(I) is a linear combination of f1, . . . , f� over CE . Therefore, solE(I) is contained in 
CE[[x]]. It remains to show that solE(I) has a basis in K[[x]].

Let G ⊂ K[x][∂] be a finite basis of I , and f = z1 f1 + · · · + z� f� , where z1, . . . , z� ∈ CE are to be 
determined. Then f ∈ solE(I) if and only if P ( f ) = 0 for all P ∈ G , which is equivalent to

z1 P ( f1) + · · · + z� P ( f�) = 0 for all P ∈ G.

By comparing the coefficients of xw (w ∈Nn) in both sides of the above equations, we derive a linear 
system Az = 0̃, where A is a matrix with infinitely many rows but � columns, z = (z1, . . . , z�)

t , and 
0̃ is a column vector consisting of infinitely many zeros. Let ker(A) be the solution space of Az = 0̃
contained in C�

E
. Then

solE(I) = {
c1 f1 + · · · + c� f� | (c1, . . . , c�)

t ∈ ker(A)
}
. (7)

Let f = ( f1, . . . , f�) and c1, . . . , cm ∈ ker(A). The CE-linear independence of f1, . . . , f� implies that 
fc1, . . . , fcm are CE-linearly independent if and only if c1, . . . , cm are CE-linearly independent. In par-
ticular, dimCE

ker(A) = dimCE
solE(I), which is denoted by d. Then rank(A) is equal to � − d. Since 

I ⊂ K(x)[∂] and f1, . . . , f� ∈ K[[x]], the matrix A is over K. It follows that ker(A) ∩ K� contains d
linearly independent vectors over CE . By (7), those vectors give rise to a basis of solE(I), which is 
contained in K[[x]]. The origin is an apparent singularity of I by Definition 4.1. �

Assume that the origin is an apparent singularity of I . By desingularizing the origin, we mean 
computing a D-finite ideal J ⊂ I such that the origin is an ordinary point of J .

Definition 4.8. Let I be a D-finite ideal of K(x)[∂] and S be a finite subset of Nn . Then the left ideal

I ∩
⎛
⎝ ⋂

(v1,...,vn)∈S

K(x)[∂]{x1∂1 − v1, . . . , xn∂n − vn}
⎞
⎠

is called the sub-ideal of I with respect to S.

It is clear that the sub-ideal of a D-finite ideal with respect to any finite subset of Nn is again 
D-finite. The next corollary helps us to desingularize an apparent singularity. Its proof is immediate 
from the first paragraph in the proof of the above theorem.

Corollary 4.9. Let I be a D-finite ideal of K(x)[∂]. Assume that the origin is an apparent singularity of I . 
Set m = maxu∈IE0(I) |u|. Then the origin is an ordinary point of the sub-ideal of I with respect to (Nn

m \ IE0(I)).

5. Desingularization and applications

We are going to apply Corollary 4.9 to desingularize an apparent singularity.

5.1. Indicial ideals

We extend the notion of indicial polynomials for linear ordinary differential operators to the D-
finite case.
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For an element a in a ring and a positive integer m, the m-th falling factorial of a is defined as 
(a)m = a(a − 1) · · · (a − m + 1). Let δi = xi∂i be the Euler operator with respect to xi , i = 1, . . . , n. The 
commutation rules in K(x)[∂] imply that, for all i, j ∈ {1, . . . , n},

δiδ j = δ jδi and δi xi = xi(δi + 1).

For u = (u1, . . . , un) ∈ Nn , the symbol δu stands for the product δ
u1
1 · · · δun

n . We recall the following 
well-known facts on Euler operators.

Proposition 5.1.

(i) xm
i ∂m

i = (δi)
m for each m ∈ Z+ and i ∈ {1, . . . , n}.

(ii) p(δ)(xu) = p(u)xu for each p ∈K[x] and xu ∈ T(x).

Set K[y] = K[y1, . . . , yn] to be the ring of usual commutative polynomials with indeterminates 
y1, . . . , yn .

Definition 5.2. Let a nonzero operator P ∈ K[x][∂] be of order m. Write

xm P =
∑
v∈S

xv

⎛
⎝ ∑

|u|≤m

cu,vδ
u

⎞
⎠ , (8)

where m = (m, . . . , m) ∈ Nn , S is a finite subset of Nn and cu,v ∈ K. Let xv0 be the minimal term 
among {xv | v ∈ S} such that 

∑
|u|≤m cu,v0δ

u is nonzero. We call∑
|u|≤m

cu,v0 yu ∈K[y]

the indicial polynomial of P , and denote it by ind(P ). We further define ind(0) := 0.

By Proposition 5.1 (i), we may always write xm P in the form (8). The above definition is com-
patible with the univariate case in Jaroschek (2013); Saito et al. (1999), and was already used in the 
multivariate setting by Aroca and Cano (2001, Definition 11).

Proposition 5.3. Let P be a nonzero element of K[x][∂] and f a power series solution of P with initial expo-
nent w. Then w is a zero of ind(P ).

Proof. Assume that P is of order m and in the form (8). Moreover, let v0 be the same as in Defini-
tion 5.2. By Proposition 5.1 (ii), we have(

xm P
)
( f ) =

[∑
v∈S xv

(∑
|u|≤m cu,vδ

u
)] (

xw + higher monomials in x
)

= xv0

(∑
|u|≤m cu,v0δ

u
)

(xw) + higher monomials in x

=
(∑

|u|≤m cu,v0 wu
)

xv0+w + higher monomials in x

= 0.

Thus, 
∑

|u|≤m cu,v0 wu = 0, that is, ind(P )(w) = 0. �
Example 5.4. Consider the D-finite ideal I generated by

G1 = x1x2∂2 − x1x2∂1 + x2 − x1 and G2 = x2
1∂

2
1 − 2x1∂1 + x2

1 + 2

in Q(x1, x2)[∂1, ∂2]. Recall that we assume a term order with ∂2 	 ∂1 and x2 	 x1. A straightforward 
calculation yields that ind(G1) = y2 − 1 and ind(G2) = (y1 − 1)(y1 − 2). Note that I has two solutions 
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x1x2 sin(x1 + x2) and x1x2 cos(x1 + x2). Their respective initial exponents are (2, 1) and (1, 1), which 
are common zeros of ind(G1) and ind(G2).

Definition 5.5. Let I be a left ideal of K(x)[∂]. We call

{ind(P ) | P ∈ I ∩K[x][∂]}
the indicial ideal of I , and denote it by ind(I).

Theorem 5.6. Let I be a left ideal in K(x)[∂]. Then ind(I) is an ideal in K[y]. Moreover, I is zero-dimensional 
if it is D-finite.

Proof. For a, b ∈ ind(I), there exist P , Q ∈ I such that a = ind(P ) and b = ind(Q ). Let p and q be 
the respective orders of P and Q . Set p = (p, . . . , p) and q = (q, . . . , q). Expressing xp P and xq Q as 
polynomials in x with coefficients in K[δ] placed on the right-hand side of the powers of x, we find 
s, t ∈Nn such that

xp P = xs
(∑

|u|≤p cu,sδ
u
)

+ higher terms,

xq Q = xt
(∑

|v|≤q cv,tδ
v
)

+ higher terms.

Thus, a = ∑
|u|≤p cu,syu and b = ∑

|v|≤q cv,tyv . Let L = xt(xp P ) + xs(xq Q ), which belongs to I . Then

L = xs+t

⎛
⎝ ∑

|u|≤p

cu,sδ
u +

∑
|u|≤q

cv,tδ
v

⎞
⎠ + higher terms.

Let m be the order of L and m = (m, . . . , m). Then

xmL = xs+t+m

⎛
⎝ ∑

|u|≤p

cu,sδ
u +

∑
|v|≤q

cv,tδ
v

⎞
⎠ + higher terms.

Thus, a + b is either zero or equal to ind(L). Consequently, a + b ∈ ind(I).
Next, we prove that ra ∈ ind(I) for all r ∈ K[y]. Since r is a sum of monomials in y1, . . . , yn , it 

suffices to prove that ra ∈ ind(I) for each monomial r. Assume that r = yw , where w = (w1, . . . , wn). 
Let s in the expression of xp P be (s1, . . . , sn). Furthermore, let H = (∏n

i=1(δi − si)
wi

)
xp P . Then H

belongs to I . The commutation rules for the δi ’s yield (δi − k)xk
i = xk

i δi for all i ∈ {1, . . . , n} and k ∈ N. 
Therefore,

H = (∏n
i=1(δi − si)

wi
)

xs
(∑

|u|≤p cu,sδ
u
)

+ higher terms

= (∏n
i=1(δi − si)

wi xsi
i

)(∑
|u|≤p cu,sδ

u
)

+ higher terms

= (∏n
i=1 xsi

i δ
wi
i

)(∑
|u|≤p cu,sδ

u
)

+ higher terms

= xs
(
δw ∑

|u|≤p cu,sδ
u
)

+ higher terms.

Let m̃ be the order of H and m̃ = (m̃, . . . , m̃). Then

xm̃ H = xs+m̃

⎛
⎝δw

∑
|u|≤p

cu,sδ
u

⎞
⎠ + higher terms.

Thus, ra = ind(H), which belongs to ind(I). Consequently, ind(I) is an ideal in K[y].
Assume further that I is D-finite. Then there exists a nonzero operator H of some order m such 

that H ∈ I ∩K[x][∂1]. By Proposition 5.1 (i), we have
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(xm
1 · · · xm

n )H = (x2 · · · xn)
mxm

1

(
h0 + h1∂1 + · · · + hm∂m

1

)
= (x2 · · · xn)

m
(

h0xm
1 + h1xm−1

1 δ
1
1 + · · · + hmδ

m
1

)
,

where h0, . . . , hm ∈ K[x]. Thus, ind(H) ∈ K[y1] \ {0}. In the same vein, ind(I) ∩K[yi] is nontrivial for 
all i with 2 ≤ i ≤ n. By Theorem 6 in Cox et al. (2015, page 251), ind(I) is zero-dimensional. �

The last paragraph of the proof of the above theorem enables us to construct a nontrivial zero-
dimensional ideal contained in ind(I) when I is D-finite. However, this does not necessarily give 
access to a basis of ind(I).

Definition 5.7. Let I be a D-finite ideal in K(x)[∂]. Assume that M is a zero-dimensional ideal con-
tained in ind(I). The set of nonnegative integer solutions of M is called a set of initial exponent 
candidates for I .

By Proposition 5.3, the set of initial exponents of power series solutions of I must be contained 
in a set of initial exponent candidates for I . Such a candidate set can be obtained by computing 
nonnegative integer solutions of some zero-dimensional algebraic system over K.

Example 5.8. Consider the D-finite ideal I from Example 5.4. Then ind(G1) = y2 − 1 and ind(G2) =
(y1 − 1)(y1 − 2). A set of initial exponent candidates for I is {(2, 1), (1, 1)}. Actually, (2, 1) and (1, 1)

are the initial exponents of the solutions x1x2 sin(x1 + x2) and x1x2 cos(x1 + x2), respectively.

The following example indicates that initial candidates for I do not necessarily give rise to power 
series solutions of I .

Example 5.9. Consider the D-finite ideal I generated by the Gröbner basis

G1 = x1x2∂2 + (−x2
1 + 2x1x2)∂1 − 2x2,

G2 = (x3
1 − x2

1x2)∂
2
1 + 2x1x2∂1 − 2x2

in Q(x1, x2)[∂1, ∂2]. A direct calculation yields ind(G1) = y2 − y1 and ind(G2) = (y1 − 1)y1. Thus, a 
set of initial exponent candidates for I is S = {(0, 0), (1, 1)}. Actually, solE(I) is spanned by {x1/(x1 −
x2), x1x2}. In this case, (1, 1) is the initial exponent of x1x2. However, (0, 0) is not the initial exponent 
of any power series solution of I .

5.2. Desingularization

Applying Corollary 4.9 amounts to determining a basis of the intersection of several D-finite ideals. 
The next proposition is implicitly used in brief descriptions on how to compute the sum of two 
∂-finite objects in Chyzak and Salvy (1998, Section 2.2.1). We prove it formally for completeness.

Proposition 5.10. Let I and J be two left ideals of K(x)[∂], and K(x)[∂][t] be the ring of polynomials over 
K(x)[∂] with the commutation rule Pt = t P for all P ∈ K(x)[∂]. Let H be the left ideal generated by t I + (1 −
t) J in K(x)[∂][t]. Then I ∩ J = H ∩K(x)[∂].

Proof. There are two ways to prove the proposition. Observe that 0, 1 and t belong to the center of 
K(x)[∂][t]. So the two substitutions given by t �→ 0 and t �→ 1 induce two ring homomorphisms from 
K(x)[∂][t] to K(x)[∂], respectively. We can then proceed by imitating the proof in of Theorem 11 in 
Cox et al. (2015, page 187). Below is a self-contained proof.

From P = t P + (1 − t)P , we see that P ∈ H ∩ K(x)[∂] for all P ∈ I ∩ J . Conversely, assume P ∈
H ∩K(x)[∂]. Then there exist Q ∈ K(x)[∂][t]I and R ∈ K(x)[∂][t] J such that P = t Q + (1 − t)R by the 
commutation rule for t . The same rule enables us to write



S. Chen et al. / Journal of Symbolic Computation 95 (2019) 217–237 231
P = t

(
m∑

i=0

qit
i

)
+ (1 − t)

(
m∑

i=0

rit
i

)

for some m ∈N, qi ∈ I and ri ∈ J for all i with 0 ≤ i ≤ m. Therefore,

P = r0 +
(

m∑
i=1

(qi−1 − ri−1 + ri)t
i

)
+ (qm − rm)tm+1.

Since P is free of t , we have P = r0. It suffices to prove r0 ∈ I ∩ J . Since r0 ∈ J , it remains to prove 
r0 ∈ I . From the above equality, we see that

rm = qm, rm−1 − rm = qm−1, . . . , r1 − r2 = q1, r0 − r1 = q0.

It follows that r0 = qm + · · · + q0, which belongs to I . �
The above result allows us to determine the basis of the intersection of two left ideals by con-

traction, which can be handled by noncommutative elimination via Gröbner bases. For two D-finite 
ideals, one may avoid computing Gröbner bases naively by a noncommutative version of the FGLM 
algorithm. Please see Chyzak and Salvy (1998, Section 2.2.2) and Koutschan (2010, Section 2.3) for 
more details.

Next, we present two algorithms: one is for removing an apparent singularity, and the other is for 
detecting whether a singularity is apparent. In what follows, by “given a D-finite ideal I”, we mean 
that a finite basis of I is given.

Algorithm 5.11. Given a D-finite ideal I with the origin being an apparent singularity, compute a 
primitive Gröbner basis M ⊂ I such that the origin is an ordinary point of the D-finite ideal K(x)[∂]M .

(1) Compute the rank d of I .
(2) Compute a set of initial exponent candidates S for I by the algorithm that is implicit in Theo-

rem 5.6.
(3) For each B ⊂ S with |B| = d,

(3.1) set m := maxu∈B |u|;
(3.2) compute a primitive Gröbner basis MB of the sub-ideal of I with respect to (Nn

m \ B).
(3.3) if the origin is an ordinary point of K(x)[∂]MB , then return MB .

We have that IE0(I) ⊂ S by Proposition 5.3, and |IE0(I)| = d by Definition 4.1. So one of the B ’s in 
loop (3) is equal to IE0(I). By Corollary 4.9, the above algorithm terminates within loop (3). However, 
it may not return the smallest possible M in the sense that K(x)[∂]M ⊂ I is a D-finite ideal of the 
smallest rank such that the origin is an ordinary point.

Example 5.12. Consider the D-finite ideal I in Example 4.2. Note that the solution space of I is 
spanned by exp(x1 + x2) and x2 exp(x2) whose initial exponents are (0, 0) and (0, 1), respectively. 
The origin is an apparent singularity of I . Let B = {(0, 0), (0, 1)}. Then

(
N2

1 \ B
) = {(1, 0)}. Com-

pute a primitive Gröbner basis M of the sub-ideal of I with respect to {(1, 0)}. We find that 
HC(M) = {1 − x1 − x1x2}. The origin is an ordinary point of K(x)[∂]M .

Example 5.13. Consider the D-finite ideal I in Example 4.3. Note that the solution space of I is 
spanned by {x1 + x2, x1x2}. The origin is an apparent singularity of I . By the two generators of I given 
in Example 4.3, ind(I) contains a zero-dimensional ideal generated by y1 −1 and y2(y2 −1). So a can-
didate set B of indicial exponents is equal to {(1, 0), (1, 1)}. We find that M = {∂3

1 , ∂2
1 ∂2, ∂1∂

2
2 , ∂3

2 } is a 
primitive Gröbner basis of the sub-ideal of I with respect to {(1, 0), (1, 1)}. The origin is an ordinary 
point of the sub-ideal K(x)[∂]M .

The next algorithm is a direct application of Algorithm 5.11.
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Algorithm 5.14. Given a D-finite ideal I with the origin being a singularity, determine whether the 
origin is an apparent one, and return a primitive Gröbner basis M ⊂ I such that the origin is an 
ordinary point of the D-finite ideal K(x)[∂]M when it is apparent.

(1) Compute the rank d of I .
(2) Compute a set of initial exponent candidates S for I by the algorithm that is implicit in Theo-

rem 5.6.
(3) If |S| < d, then return “the origin is not an apparent singularity”.
(4) For each B ⊂ S with |B| = d,

(4.1) set m := maxu∈B |u|;
(4.2) compute a primitive Gröbner basis MB of the sub-ideal of I with respect to (Nn

m \ B).
(4.3) if the origin is an ordinary point, then return MB .

(5) Return “the origin is not an apparent singularity”.

The above algorithm clearly terminates. The solution space of I cannot be spanned by power series 
if the candidate set S has less than d elements. So the origin is not an apparent singularity in this 
case. The rest is correct by Algorithm 5.11.

Example 5.15. Consider the left ideal I from Example 5.9. The ideal is of rank two. The origin is a 
singularity of I . Moreover, ind(G1) = y2 − y1 and ind(G2) = (y1 − 1)y1, where G1 and G2 are given 
in Example 5.9. Thus, S = {(0, 0), (1, 1)} is a set of initial exponent candidates for I .

Since the rank of I is equal to two, S is the only subset B in step 2 of the above algorithm, and (
N2

2 \ B
) = {(1, 0), (0, 1), (2, 0), (0, 2)}. Computing a primitive Gröbner basis M of the sub-ideal of I

with respect to {(1, 0), (0, 1), (2, 0), (0, 2)}, we find that

HC(M) =
{

x1(x1 − x2)
3,−(x1 − x2)

3
}

.

The origin is a singularity of the D-finite ideal generated by M . So it is not an apparent singularity 
of I . Actually, solE(I) is spanned by x1/(x1 − x2) and x1x2.

Example 5.16. Let I = Q(x1, x2)[∂1, ∂2]G , where G consists of

G1 = (x1 − x2)∂
2
1 − x1x2∂2 + x1x2∂1 + (x1 − x2),

G2 = (x1 − x2)∂1∂2 − (1 + x1x2)∂2 + (1 + x1x2)∂1 + (x1 − x2),

and

G3 = (x1 − x2)∂
2
2 − x1x2∂2 + x1x2∂1 + (x1 − x2).

Then rank(I) = 3 and the origin is a singularity of I .
From the three indicial polynomials ind(G1) = (y1 − 1)y1, ind(G2) = y2(y1 − 1) and ind(G3) =

(y2 − 1)y2, we see that S = {(0, 0), (1, 0), (1, 1)} is a set of initial exponent candidates for I . 
Let B = S . Then 

(
N2

2 \ B
) = {(0, 1), (2, 0), (0, 2)}. A primitive Gröbner basis M of the sub-ideal of 

I with respect to {(0, 1), (2, 0), (0, 2)} asserts that the origin is an ordinary point of the sub-
ideal. By Theorem 4.7, the origin is an apparent singularity of I . Actually, solE(I) is spanned by 
{sin(x1 + x2), cos(x1 + x2), x1x2}.

Remark 5.17. Given a D-finite ideal I , we can determine whether solE(I) is spanned by power series 
in K[[x]] by Algorithm 5.14. This is because solE(I) is spanned by power series in K[[x]] if and only 
if the origin is either an ordinary point or an apparent singularity of I by Theorems 3.7 and 4.7.
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5.3. A heuristic method for desingularization

For a nonzero operator L ∈ K[x1][∂1] with apparent singularities, the randomized algorithm 
by Chen et al. (2016) computes a desingularized operator for L by taking the least common left mul-
tiple of L with a random operator of appropriate order with constant coefficients. This algorithm has 
been proved to obtain a correct desingularized operator for L with probability one, and is more effi-
cient than deterministic algorithms. We now extend this randomized technique to the case of several 
variables. To this end, we need two lemmas about determinants.

Lemma 5.18. Let U = (ui, j) be a (k +d) ×d matrix of full rank over K, and Y = (Yi,m) be a (k +d) ×k matrix 
whose entries are distinct indeterminates. Then

det(U , Y ) =
∑

(i1,...,ik)∈S

αi1,...,ik Yi1,1 · · · Yik,k,

where S is a nonempty subset of Nk
k+d, and every coefficient αi1,...,ik is nonzero.

Proof. Since U is of full rank, it contains a d ×d nonzero minor. Without loss of generality, we assume 
that the minor consists of the first d rows and the first d columns in U . Setting Yi,m = 0 for all i, j
with 1 ≤ i ≤ d and 1 ≤ m ≤ k, we map det(U , Y ) to∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u1,1 · · · u1,d 0 · · · 0
...

. . .
...

...
. . .

...

ud,1 · · · ud,d 0 · · · 0
ud+1,1 · · · ud+1,d Yd+1,1 · · · Yd+1,k

...
. . .

...
...

. . .
...

ud+k,1 · · · ud+k,d Yd+k,1 · · · Yd+k,k

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

which is nonzero. So det(U , Y ) is also nonzero. Collecting the like terms of det(U , Y ), we prove the 
lemma. �
Lemma 5.19. Let U be the same matrix as given in Lemma 5.18, and let Z1, . . . , Zk be mutually disjoint sets 
of indeterminates. Let Z1,m, . . . , Zd+k,m be distinct monomials in the indeterminates belonging to Zm, m =
1, . . . , k. Denote by Z the (k +d) ×k matrix (Zi,m). Then det(U , Z) is a nonzero polynomial in K[Z1 ∪· · ·∪ Zn].

Proof. By Lemma 5.18, we have

det(U , Z) =
∑

(i1,...,ik)∈S

αi1,...,ik Zi1,1 · · · Zik,k,

where S is a nonempty subset of Nk
k+d and every αi1,...,ik is nonzero. For two distinct elements 

(i1, . . . , ik), ( j1, . . . , jk) ∈ S , the two terms Zi1,1 · · · Zik,k and Z j1,1 · · · Z jk,k are also distinct by the def-
inition of Zi, j ’s. Hence, there are no like terms to be collected in the right-hand side of the above 
equality. �
Theorem 5.20. Let I ⊂ K(x)[∂] be a D-finite ideal of rank d. Assume that the origin is an apparent singularity 
of I , and that f1, . . . , fd are power series solutions of I with distinct initial exponents u1 , . . . , ud, respectively. 
Set � = |Nn

m|,
m = max

1≤i≤d
|ui| and Nn

m \ IE0(I) = {ud+1, . . . ,u�}.

For each j ∈ {1, . . . , � − d}, let fd+ j be the power series expansion of
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exp
(
z1, jx1 + · · · + zn, j xn

)
around the origin, where z1, j, . . . , zn, j are distinct constant indeterminates. Furthermore, let A = (ai, j) be the 
� × � matrix, where ai, j is equal to the constant term of ∂ui ( f j) for all i, j ∈ {1, . . . , �}. Then

(i) det(A) is a nonzero polynomial in K[z1,1, . . . , zn,1, . . . , z1,�−d, . . . , zn,�−d].
(ii) Let ci, j be an element of K for all i with 1 ≤ i ≤ n and j with 1 ≤ j ≤ � − d. If det(A) does 

not vanish at (c1,1, . . . , cn,1, . . . , c1,�−d, . . . , cn,�−d), then the origin is an ordinary point of I ∩(⋂�−d
j=1 K(x)[∂]{∂1 − c1, j, . . . , ∂n − cn, j

})
.

Proof. (i) Without loss of generality, we order the initial exponents u1, . . . , ud increasingly with re-
spect to ≺. Then the submatrix consisting of the first d rows and first d columns in A is in an upper 
triangular form whose elements in the diagonal are all nonzero by (9). Thus, the first d columns of A
are linearly independent over K. Let z j = (z1, j, . . . , zn, j) for all j with 1 ≤ j ≤ � −d. Then the (d + j)th 
column of A consists of zu1

j , . . . , zu�

j , which are distinct monomials in z j . Thus, det(A) is nonzero by 
Lemma 5.19.

(ii) Two ring homomorphisms are needed for the proof of the second assertion.
Let R = K[z1,1, . . . , zn,1, . . . , z1,�−d, . . . , zn,�−d]. We define φ to be the homomorphism from R[[x]]

to R that takes the constant term of a power series in x, which extends the homomorphism 
from K[[x]] to K defined in Section 2.3. By (2),

∀w ∈Nn with w ≺ v, φ
(
∂w( f )

) = 0 and φ
(
∂v( f )

) �= 0 (9)

for every nonzero power series f ∈ R[[x]] with initial exponent v.
Let ψ : R →K be the substitution that maps zi j to ci j for every i ∈ {1, . . . , n} and j ∈ {1, . . . , � −d}. 

Then ψ is a ring homomorphism. We extend ψ to a homomorphism from R to R[[x]] by the rule 
ψ(xi) = xi , i = 1, . . . , n. The extended homomorphism is also denoted by ψ .

Since the determinant of A does not vanish at (c1,1, . . . , cn,1, . . . , c1,�−d, . . . , cn,�−d), the determi-
nant of ψ(A) is nonzero. Let g j = ψ( f j) for j = 1, . . . , � and let B = (bij) be the � × � matrix with 
bij = ∂ui g j for all i, j ∈ {1, . . . , �}. Then φ(bij) = ψ(aij) for all i, j ∈ {1, . . . , �}, because φ ◦ ψ = ψ ◦ φ

and ψ ◦ ∂k = ∂k ◦ ψ for all k with 1 ≤ k ≤ n. It follows that φ(B) = ψ(A). Thus, det(φ(B)) is nonzero, 
and so is det(B). Accordingly, g1, . . . , g� are linearly independent over K by Lemma 2.5.

Set I j = K(x)[∂]{∂1 − c1, j, . . . , ∂n − cn, j
}

for all j in {1, . . . , � − d}. Then g1, . . . , gd form a basis of 
solE(I), because gi = f i , i = 1, . . . , d, and gd+ j spans solE(I j), because gd+ j corresponds to the power 
series expansion of exp

(
c1, j x1 + · · · + cn, j xn

)
at the origin for all j ∈ {1, . . . , � − d}. It follows from 

Lemma 4.5 (iii) that g1, . . . , g� form a basis of solE( J ), where J = I ∩ I1 ∩ · · · ∩ I�−d .
To prove that the origin is an ordinary point of J , it suffices to find a basis of solE( J ) in K[[x]]

whose initial exponents are exactly the elements of Nn
m by Lemma 4.6. Since the power series 

g1, . . . , g� are linearly independent over K, there exists an � × � invertible matrix C over K such 
that (h1, . . . , h�) = (g1, . . . , g�)C , in which h1, . . . , h� have distinct initial exponents. Set H = BC . Then 
H is the � ×� matrix whose element at the ith row and jth column is equal to ∂ui h j . Moreover, φ(H)

is of full rank because φ(H) is equal to φ(B)C . Suppose that there exists h j ∈ {h1, . . . , h�} such that 
its initial exponent v does not belong to Nn

m . Then v is higher than any element of Nn
m , because ≺ is 

graded. In other words, ui ≺ v for all i with 1 ≤ i ≤ �. It follows from (9) that the jth column of φ(H)

is a zero vector, a contradiction. Therefore, the initial exponents of h1, . . . , h� are exactly the elements 
of Nn

m . �
Algorithm 5.21. Given a D-finite ideal I with the origin being an apparent singularity, compute a 
primitive Gröbner basis M such that M ⊂ I and the origin is an ordinary point of the D-finite ideal 
K(x)[∂]M , or return “fail”.

(1) Set d := rank(I).
(2) Compute a set of initial exponent candidates S for I by the algorithm that is implicit in Theo-

rem 5.6.
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(3) For each B ⊂ S with |B| = d,
(3.1) set m := maxu∈B |u| and � := |Nn

m|;
(3.2) choose a point c = (c1,1, . . . , cn,1, . . . , c1,�−d, . . . , cn,�−d) ∈Kn(�−d);
(3.3) compute the primitive Gröbner basis MB of the D-finite ideal

I ∩
⎛
⎝�−d⋂

j=1

K(x)[∂]{∂1 − c1, j, . . . , ∂n − cn, j}
⎞
⎠ ;

(3.4) if the origin is an ordinary point, then return MB .
(4) return “fail”.

The above algorithm clearly terminates. If B in step 3 coincides with IE0(G) and det(A) given 
in Theorem 5.20 does not vanish at c, then the origin is an ordinary point of the D-finite ideal 
K(x)[∂]MB by Theorem 5.20. So it does not return “fail” unless c lies on the variety defined by 
det(A) = 0. In this sense, the above algorithm succeeds outside of a variety which is not the full 
space. A feature of the above algorithm is that it is more efficient to compute a Gröbner basis of the 
intersection of several left ideals, most of which are generated by first-order operators with constant 
coefficients. Another advantage is that this algorithm is likely to remove all apparent singularities, not 
just the origin, because almost all choices of ci, j will also work for apparent singularities at almost 
any other point. On the other hand, it is not convenient to apply Theorem 5.20 to determine whether 
the origin is an apparent singularity, because the above algorithm will always return “fail” if the origin 
is a singularity but not an apparent one.

Example 5.22. Consider the left ideal from Example 4.2. Then n = 2, rank(I) = 2 and the origin is an 
apparent singularity. A set of initial exponent candidates for I is S = {(0, 0), (0, 1)}. Set B = S and 
� = |N2

1| = 3. Choose c = (19, 23) ∈ Kn(�−d) = K2. Let MB be the primitive Gröbner basis of the left 
ideal I ∩ K(x)[∂]{∂1 − 19, ∂2 − 23}. We find that HC(MB) = {9 + 11x2}. It follows from Definition 3.1
that K(x)[∂]MB ⊂ I for which the origin is an ordinary point.

5.4. Truncating power series solutions at apparent singularities

When the origin is an apparent singularity of a D-finite ideal, the solution space of the ideal has 
a basis of power series. We show how to truncate such a basis by the proof of Theorem 4.7. To this 
end, we introduce some new notation.

For a nonzero element P ∈ K(x)[∂] with HT(P ) = ∂p , we call p the exponent of P . Let f =∑
u∈Nn (cu/u!)xu ∈ K[[x]]. For each m ∈Nn , set

[ f ]m =
∑
u
m

cu

u! xu ∈K[x],

which is called the truncation of f at m. The next lemma enables us to truncate the application of an 
operator to a power series.

Lemma 5.23. Let P ∈ K[x][∂] with exponent p. Then [P ( f )]m = [
P ([ f ]m+p)

]
m for all f ∈ K[[x]] and 

m ∈Nn.

Proof. For v ∈ Nn , let Hv denote the ideal generated by all powers xu with u 	 v in K[[x]]. Then 
P (g) ∈ Hm for all g ∈ Hm+p by a direct calculation. Since f = [ f ]m+p + g for some g ∈ Hm+p , we 
have P ( f ) = P

([ f ]m+p
) + P (g). Truncating both sides of the above equality yields the lemma. �

Recall some notation and results given in the proof of Theorem 4.7. Let I be a D-finite ideal of 
rank d and G ⊂ K[x][∂] be a finite basis of I . Moreover, let G contain k elements. Assume that the 
origin is an apparent singularity of I . We desingularize the origin to obtain another D-finite ideal J
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contained in I . Assume that � = rank( J ) and that M is a Gröbner basis of J . With the help of M and 
formula (4), we can compute any truncations of a basis f1, . . . , f� of solE( J ).

For z1, . . . , z� ∈ K, we have that z1 f1 + · · · + z� f� ∈ solE(I) if and only if

z1 P ( f1) + · · · + z� P ( f�) = 0 for all P ∈ G . (10)

The above equations result in a matrix A with infinitely many rows and � columns over K such that 
the equations hold if and only if Az = 0̃, where z = (z1, . . . , z�)

t . Moreover, the rank of A is equal to 
� − d.

To compute a truncation of power series solutions, we need some submatrices of A. For every 
u ∈ Nn , let Bu be the k × � matrix obtained by equating the coefficients of xu in both sides of (10). 
By Lemma 5.23, the matrix Bu can be obtained from the equations

z1 P ([ f1]u+p) + · · · + z� P ([ f�]u+p) = 0 for all P ∈ G , (11)

where p is the exponent of P . For v ∈ Nn , we denote by Av the matrix obtained by stacking subma-
trices Bu for all u with u 
 v. Since rank(A) = � − d, there exists a vector w ∈ Nn such that Aw is of 
rank � −d. We can find a basis c1, . . . , cd of the right kernel of Aw . Then g1 = ( f1, . . . , f�)c1, . . . , gd =
( f1, . . . , f�)cd form a basis of solE(I) according to the proof of Theorem 4.7. It follows that

[g1]m = ([ f1]m, . . . , [ f�]m) c1, . . . , [gd]m = ([ f1]m, . . . , [ f�]m) cd.

This idea is encoded in the following algorithm.

Algorithm 5.24. Given m ∈ Nn and a left ideal I of rank d with the origin being an apparent singular-
ity, compute polynomials g1, . . . , gd ∈K[x] such that there exist K-linearly independent power series 
solutions h1, . . . , hd of I with the property

g1 = [h1]m, . . . , gd = [hd]m.

(1) By Algorithm 5.11, compute a primitive Gröbner basis M such that the origin is an ordinary point 
of K(x)[∂]M . And set � to be the rank of K(x)[∂]M .

(2) Compute [ f1]m, . . . , [ f�]m by M according to (4), where f1, . . . , f� stand for a basis of solE(M).
(3) Construct a matrix Aw of rank � − d by (11) incrementally with respect to ≺.
(4) Find a basis c1, . . . , cd of the right kernel of Aw .
(5) Return ([ f1]m, . . . , [ f�]m) c1, . . . , ([ f1]m, . . . , [ f�]m) cd .

Note that the algorithm avoids the (possibly expensive) computation of the Weyl closure I ∩
K[x][∂], which might lead to an alternative method for computing the power series solutions of I .

Example 5.25. Consider the D-finite ideal I generated by G1 = x2∂2 + ∂1 − x2 − 1 and G2 = ∂2
1 − ∂1. 

Then rank(I) = 2 and the origin is an apparent singularity of I . We compute a power series basis of 
solE(I) truncated at m = (0, 2). Recall that the term order is graded lexicographic with x1 ≺ x2.

(1) Let M be the primitive Gröbner basis of the left ideal J , where J is the intersection of I ∩
K(x)[∂]{x1∂1 − 1, ∂2}. The origin is an ordinary point of J and rank( J ) = 3.

(2) By formula (4), we obtain a power series basis of solE( J ) truncated at m, which consists of 
p1 = [exp(x1 + x2) − x1 − x2 exp(x2)]m , p2 = x1 and p3 = [x2 exp(x2)]m .

(3) A straightforward calculation yields

A0 =
(

1 −1 0
0 0 0

)
,

which is of rank one. A basis of its right kernel is {(1, 1, 0)t , (0, 0, 1)t}. It follows that a power 
series basis of solE(I) truncated at m is{

[exp(x1 + x2) − x2 exp(x2)]m , [x2 exp(x2)]m
}
.
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