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ABSTRACT
An orthogonal Ore ring is an abstraction of common proper-
ties of linear partial differential, shift and q-shift operators.
Using orthogonal Ore rings, we present an algorithm for
finding hyperexponential solutions of a system of linear dif-
ferential, shift and q-shift operators, or any mixture thereof,
whose solution space is finite-dimensional. The algorithm is
applicable to factoring modules over an orthogonal Ore ring
when the modules are also finite-dimensional vector spaces
over the field of rational functions.

Categories and Subject Descriptors
I.1.2 [Computing Methodologies]: Symbolic and Alge-
braic Manipulation—Algorithms

General Terms
Algorithms

Keywords
Linear partial differential systems; Linear partial difference
systems; Ore rings; Hyperexponential solutions

1. INTRODUCTION
A (partial) linear functional system consists of linear par-

tial differential, shift, and q-shift operators. In this pa-
per we consider those linear functional systems which have
finite-dimensional solution spaces. In recent years there
has been work on decomposing these systems into “subsys-
tems” whose solution spaces are of lower dimension. This
has been done following either ideal-theoretical [15, 16] or
module-theoretical [2, 20] approaches. In both cases the
methods require the computation of hyperexponential solu-
tions of some linear functional systems obtained from either
the associated equations or the integrable systems [19]. This
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observation motivates us to develop a general algorithm for
hyperexponential solutions of linear functional systems.

Recall that a system of algebraic polynomials with a fi-
nite number of solutions can be solved as follows: compute
a Gröbner basis G with respect to an elimination order-
ing; find the roots of the univariate polynomial in G, and
finally perform back-substitution. Unfortunately, this ap-
proach does not seem to work well for linear functional sys-
tems, because a solution of an ordinary linear functional
equation may contain several unspecified constants with re-
spect to one operator. These constants are, however, not
constants with respect to other operators. As such, the back-
substitution introduces new unknowns in addition to intro-
ducing complicated irrational function coefficients (possibly
involving integral signs). This means that we do not know
what closed-form solutions of the new unknowns should be
looked for in order to find hyperexponential solutions.

The method presented in this paper needs only operations
on rational functions to combine univariate hyperexponen-
tial functions, although it has to solve several ordinary linear
functional equations. However, there has been significant
work done in recent years for computing hyperexponential
solutions of linear ordinary functional equations. We refer
the reader to [17, 7, 13, 14, 4] for algorithms and their imple-
mentations. In addition the algorithm in [16, §3.3] computes
hyperexponential solutions for a linear partial differential
system with finite-dimensional solution space. Our paper
generalizes the ideas in [16, §2, 3 and 4] to linear difference
and mixed systems.

Guided by the work of [9, 10] we introduce the notion of
orthogonal Ore rings. These are general enough to include
rings of partial differential, shift, and q-shift operators over
the field of multivariate rational functions but also simple
enough to analyze the nonlinear compatibility conditions of
a rank-one ideal. Analysis of the compatibility conditions
is both a key technique used in this paper and a basic tool
for studying multivariate functions and sequences (see for
example [5, 16]). Based on orthogonal Ore rings and the as-
sociated linear action of their elements, we can understand a
hyperexponential function as a function whose partial “log-
arithmic derivatives” are rational. In differential algebra
these are of course exponential functions while in difference
algebra these are usually called hypergeometric terms. Find-
ing hyperexponential solutions of a linear functional system
is equivalent to finding effective rank-one ideals containing
the ideal generated by the operators in the system.



The main result of this paper is summarized in Theorem 7.
Roughly speaking this says that in order to find hyperexpo-
nential solutions, we need to find univariate hyperexponen-
tial solutions of several ordinary linear functional equations,
to compute rational solutions of some special nonlinear func-
tional systems which can be decoupled by simple transfor-
mations and then finally to compute rational solutions of
some special kind of parametric first-order ordinary linear
functional systems. Due to page limitations, Theorem 7 is
given for the bivariate case only. For the general case, a
lengthy induction process is required and will be given in a
forthcoming technical report.

The remainder of this paper is organized as follows: Sec-
tion 2 specifies the problem to be solved and presents neces-
sary preliminaries. Section 3 defines the notion of orthogo-
nal Ore ring while the next section connects elements of an
orthogonal Ore ring with some special pseudo-linear opera-
tors. Section 5 defines hyperexponential elements with the
notion of similarity of such elements appearing in the next
section. Section 7 briefly describes an algorithm for rational
solutions of a linear functional system. Section 8 outlines
the basic idea with the main algorithm given in Section 9.

2. PRELIMINARIES
Let C be a field of characteristic zero and F the field of

rational functions in x1, ..., xn over C. Denote by 1 the
identity mapping of F, and by 0 the mapping that sends
everything to zero. For i = 1, . . . , n, let σi be an auto-
morphism of F and δi be an additive mapping of F with the
property that

δi(ab) = σi(a)δi(b) + δi(a)b for all a, b ∈ F. (1)

Set

Φ = {(σ1, δ1), . . . , (σn, δn)}. (2)

The set Φ is said to be commutative if

σi ◦ σj = σj ◦ σi, σi ◦ δj = δj ◦ σi, δi ◦ δj = δj ◦ δi,

where i, j ∈ {1, 2, . . . , n} with i 6= j. With the commutative
set Φ, we can construct a well-defined Ore ring F[∂1, . . . , ∂n]
over F whose multiplicative rules are

∂i∂j = ∂j∂i and ∂ia = σi(a)∂i + δi(a), (3)

for all i, j ∈ {1, 2, . . . , n} and a ∈ F (see [10, §1.2]). Denote
the noncommutative ring F[∂1, . . . , ∂n] by A. Note that the
first multiplicative rule hinges on the commutativity of Φ.

Example 1. Let F=Q(x, k) and Φ=
{(

1, ∂
∂x

)
, (σ2,0)

}
,

where σ2 sends a(x, k) ∈ F to a(x, k +1). The set Φ is com-
mutative. Then A = F(x, k)[∂x, Ek] is an Ore polynomial
ring with multiplicative rules ∂xEk = Ek∂x, ∂x a = a ∂x+ ∂a

∂x
and Ek a = a(x, k + 1)Ek. 2

From now on, the set Φ is assumed to be commutative.
All ideals of A considered in this paper will be left ideals.

Since F is a field, we can use a noncommutative version
of Buchberger’s algorithm to compute Gröbner bases (see
Theorem 1.2 in [10]). An ideal I of A is of finite rank if
the F-linear space A/I is finite-dimensional with the rank
of I then being defined to be the dimension of the vector
space A/I over F. Proposition 2.1 in [10] states that an
ideal I is of finite rank if and only if it contains gi ∈ F[∂i],
for i = 1, . . . , n. The set {g1, . . . , gn} is called a rectangular
system of I. We are concerned with

Problem H. Given a basis of an ideal I of finite rank, com-
pute all ideals of rank one that contain I.

We will see later in Section 5 that Problem H is slightly
more general than that of finding hyperexponential solutions
of I. Note, however, that the statement of Problem H does
not involve any notion of “solutions” of I.

Example 2. Consider A from Example 1. Let

L1 = ∂2
x−

2((k − x)2 + k)

x(k − x)
∂x+

((k − x)3 − 3xk + 3k2 + 2k)

x2(k − x)
,

L2 = E2
k −

2x(x− k − 1)

x− k − 2
Ek +

x2(x− k)

x− k − 2
,

and I be the ideal generated by L1 and L2 in A. One can
verify that L1 and L2 is a Gröbner basis of I by, for example,
the Maple packages Ore algebra and Groebner. Thus, A/I
has rank four with an F-linear basis {1, ∂x, Ek, ∂xEk}. An
rank-one ideal containing I is generated by

∂x +
x− k − 1

x
and Ek − x.

We show later in Example 10 that there are infinitely many
rank-one ideals containing I. 2

An ideal J of rank one in A can be generated by a basis

f1 = ∂1 − r1, . . . , fn = ∂n − rn, with ri ∈ F. (4)

Since the S-polynomial gij = (∂ifj − ∂jfi) belongs to J ,
reducing gij with respect to the basis (4) yields

(σj(ri)rj − σi(rj)ri + δj(ri)− δi(rj)) ∈ J.

As J is not the entire ring A, we have

σj(ri)rj + δj(ri) = σi(rj)ri + δi(rj), (1 ≤ i < j ≤ n). (5)

We call (5) the compatibility conditions of J . If both σi

and σj are 1, (5) becomes δj(ri) = δi(rj), which is the
usual compatibility condition for first-order linear PDE’s.
If both δi and δj are 0, (5) becomes σj(ri)rj = σi(rj)ri (see
Definition 3 of [5]). If A is the ring in Example 1, then, (5)
becomes r1(x, k + 1) r2(x, k)=r2(x, k) r1(x, k)+ ∂ r2

∂x
.

If we are given r1, . . . , rn satisfying (5), then (4) is a
Gröbner basis and hence J is of rank one. A solution of
Problem H is an algorithm to find all the elements r1, . . . , rn

of F such that (5) holds, and such that every element of the
given basis of I can be reduced to zero by the basis (4).

3. ORTHOGONAL ORE RINGS
In this section, we define the notion of orthogonal Ore

rings, which are a special case of the Ore rings defined in [10].
Our motivation is from two observations: (i) the presence
of arbitrary σi and δj would cause very complicated calcu-
lations; (ii) an operator in a linear functional system usu-
ally acts non-trivially on only one variable. Let Fi be the
field C(x1, . . . , xi−1, xi+1, . . . , xn), for i = 1, . . . , n.

Definition 1. The set Φ in (2) is said to be orthogonal
if, for i = 1, . . . , n, the following conditions are satisfied:
(i) σi(xi) ∈ C[xi] and σi(a) = a if and only if a ∈ Fi;
(ii) δi(xi) ∈ C(xi) and δi(a) = 0 if and only if a ∈ Fi;
(iii) δi 6= 0 if σi = 1. If Φ is orthogonal, the Ore ring A
with multiplicative rules (3) is said to be orthogonal.



If A is orthogonal, we have, for i, j ∈ {1, . . . , n} with i 6= j,

∂jxi = xi∂j , ∂jσi(xi) = σi(xi)∂j , ∂jδi(xi) = δi(xi)∂j , (6)

The name “Orthogonal Ore rings” is due to the first equality
in (6) and the fact ∂ixi 6= xi∂i by the third condition.

The goal of this paper is to provide a solution to Prob-
lem H when A is orthogonal.

Both the ring of usual partial differential operators and
that of partial shift operators are instances of orthogonal
Ore rings as is the ring in Example 1. One can observe that
the pairs (σ1, δ1), . . . , (σn, δn) in these examples have the
property that either σi = 1 or δi = 0. The next theorem
shows that this observation is not a coincidence.

Theorem 1. Let A be an orthogonal Ore ring with Φ
given in (2). Then A is isomorphic to another orthogo-
nal Ore ring B = F[∆1, . . . , ∆n] whose multiplicative rules
are: (i) ∆i∆j = ∆j∆i, (ii) ∆ia = σi(a)∆i if σi 6= 1, and
(iii) ∆ja=a∆j+δj(a) if σj=1, where i, j∈{1, . . . , n}, a ∈ F.

Proof The Ore ring B is well-defined and orthogonal be-
cause the commutative set {(σ1, ε1), . . . , (σn, εn)}, in which
εi = 0 if σi 6= 1, and εi = δi if σi = 1, is orthogonal. Since
σi(xi) differs from xi if σi 6= 1, we can define

Di = ∆i if σi = 1, Di =
∆i + δi(xi)

xi − σi(xi)
if σi 6= 1.

A repeated use of (6) shows that DiDj = DjDi. Thus, the
F-linear mapping φ sending ∂m1

1 · · · ∂mn
n to Dm1

1 · · ·Dmn
n is

a well-defined bijection. By Theorem 3.1 in [11, §8.3] or
Theorem 9 in [9], we have φ(∂ia) = Dia for all a ∈ F and
i ∈ {1, . . . , n}. An easy induction then proves that φ is a
ring homomorphism. 2

From this point on we assume that A is an orthogonal
Ore ring, in which σi = 1 if δi 6= 0 and σi 6= 1i if δi = 0,
for i = 1, . . . , n. The differential index ρ(A) of A is defined
to be the number of nonzero δi appearing in Φ. If ρ(A) is
equal to n (respectively, equal to 0), then A is the ring of
partial differential (respectively, difference) operators. For a
later convenience, the elements of Φ in (2) are so arranged
that δj is unequal to 0 for j = 1, . . . , ρ(A), and δj is equal
to 0 for j = ρ(A) + 1, . . . , n.

A rank-one ideal of A is said to be effective if it has a
basis given in (4), in which ri is nonzero for i = ρ(A) + 1,
. . . , n. We will see in Section 5 that a rank-one ideal has a
hyperexponential solution if and only if it is effective.

4. LINEAR ACTIONS AND SOLUTIONS
To solve Problem H for orthogonal Ore rings, we shall re-

gard indeterminates ∂1, . . . , ∂n as operators acting on some
commutative rings containing F (referred as F-algebras).
This view enables us to connect ideals of rank one with cer-
tain “solutions” of Ore polynomials.

An F-algebra E is said to be Φ-compatible if all the σi’s
and δj ’s can be extended on E in such a way that (i) all
the σi’s are injective endomorphisms of E, (ii) equality (1)
holds for all elements of E, and (iii) Φ in (2) is commutative
on E. The reader is referred to [18, 19] for the existence
of Φ-compatible F-algebras in the ordinary case. The next
example describes a Φ-compatible F-algebra defined by an
effective rank-one ideal.

Example 3. Let ρ(A) be p and J be an effective rank-
one ideal generated by elements in (4). We construct a

Φ-compatible F-algebra E by J . Let E = F(z), where z is
an indeterminate. We define δi(z) = riz, i = 1, . . . , p
and σj(z) = rjz, j = p + 1, . . . , n. Then δi and σj can be
naturally extended to E as in usual differential and difference
algebra. Note that σi (1 ≤ i ≤ p) and δj (p+1 ≤ j ≤ n) are
kept to be 1 and 0, respectively. Hence (1) holds for all el-
ements of E. The σj’s are injective because rp+1 · · · rn 6= 0.
The commutativity of Φ on E holds because of (5). Here we
verify that δi◦σj = σj◦δi, 1 ≤ i ≤ p and (p + 1) ≤ j ≤ n.
We compute

δi ◦σj(z) = (δi(rj)+ rirj)z and σj ◦ δi(z) = σj(ri)rjz. (7)

Since σi=1 and δj=0, (5) becomes σj(ri)rj=δi(rj)+rirj. It
then follows from (7) that δi ◦ σj(z) = σj ◦ δi(z), which
implies δi ◦ σj(f) = σj ◦ δi(f) for all f ∈ E, because δi

acts on a product or a fraction as a usual partial differential
operator and σj is a field homomorphism. The verification
of σi ◦ σj = σj ◦ σi and δi ◦ δj = δi ◦ δj is similar. 2

An element c of E is called a constant with respect to σi

and δi if σi(c) = c and δi(c) = 0. The element c is called
a constant if it is a constant with respect to all σi and δi,
for i = 1, . . . , n. The reader is referred to [9] for a general
way to define the action of Ore polynomials on E. We need
only a special kind of pseudo-linear operators.

Definition 2. Let E be a Φ-compatible F-algebra. De-
fine θi to be the mapping sending an element a of E to δi(a)
for i = 1, . . . , ρ(A), and to σi(a) if i = ρ(A) + 1, . . . , n.

By Lemma 3 in [9] we conclude that θi is pseudo-linear with
respect to σi and δi over E, that is, θi is additive and

θi(ab) = σi(a)θi(b) + δi(a)b, a, b ∈ E. (8)

Definition 2 and the commutativity of Φ imply θi◦θj=θj ◦θi.
This commutativity allows us to define the action of

P =
∑

m1,...,mn

pm1,...mn∂m1
1 · · · ∂mn

n (P ∈ A)

on a ∈ E as P • a =
∑

m1,...,mn
pm1,...mnθm1

1 ◦ · · · ◦ θmn
n (a).

In this way the ∂i’s can be regarded as E-pseudo-linear op-
erators with respect to σi and δi on E. If c is a constant
with respect to σi and δi, then ∂i • (ca) = c∂i • a by (8). So
a constant with respect to σi and δi is also simply called a
∂i-constant. An element of A is a linear operator over the
field of all constants in E.

Example 4. In applications we are mainly interested in
the following three operators: If σi is 1, then ∂i is called a
differential operator. If σi(xi) = xi + 1 and δi = 0, then ∂i

is called a shift operator. If σi(xi) = qxi and δi = 0, where
q is a constant in C but not a root of unity, then ∂i is called
a q-shift operator. If σi is not 1 and unspecified, then ∂i is
called a σ-shift operator. Consider the ring A in Example 1.
By Definition 2, the application of ∂x on a function a(x, k)
is ∂a

∂x
, and that of Ek is a(x, k + 1). Thus ∂x and Ek can be

viewed as differential and shift operators, respectively. 2

An element y of some Φ-compatible F-algebra is said to be a
solution of a subset S of A if the application of any element
of S to y equals zero. Example 3 illustrates one way to
introduce a Φ-compatible F-algebra that contains a nonzero
solution of an effective ideal of rank one. However, this way
would introduce many unnecessary new constants. If we
do not want any new constant, Φ-extensions may have zero



divisors (see Example 0.1 in [18]). It is also clear that zero
is the only solution of an ineffective ideal of rank one.

5. HYPEREXPONENTIAL ELEMENTS
A nonzero element h of some Φ-compatible F-algebra is

hyperexponential over F with respect to ∂i if ∂i • h=rih,
where ri ∈ F. The rational function ri is called the ∂i-
certificate of h. Note that ri is assumed to be nonzero in [9].
We can remove this restriction because the θi’s in Defini-
tion 2 are very special. An element is hyperexponential over F
(with respect to ∂1, . . . , ∂n) if it is hyperexponential over F
with respect to all the ∂i’s. All nonzero elements of F are
hyperexponential and the product of two hyperexponential
elements is hyperexponential.

Example 5. Let A=C(m, k)[Em, Ek], where Em and Ek

are shift operators with respect to m and k, respectively. A
hyperexponential element over C(m, k) is usually called a
hypergeometric term. For example:

(
m
k

)
, (m+k)!, 3m+k are

all bivariate hypergeometric terms. 2

A relation between hyperexponential solutions and effective
rank-one ideals is described in

Proposition 2. An ideal I of A has a hyperexponential
solution if and only if there exists an effective rank-one ideal
containing I.

Proof Let h be a hyperexponential solution of I and the
ideal J be generated by

(
∂1 − ∂1•h

h

)
, . . . ,

(
∂n − ∂n•h

h

)
. The

ideal J is of rank-one and effective because it has a nonzero
solution h. Moreover, I ⊂ J since h is a solution of I.
Conversely, J has a hyperexponential solution z in the Φ-
compatible field F(z) as described in Example 3. The ele-
ment z is also a solution of I since I ⊂ J . 2

Example 6. The rank-one ideal in Example 2 has a hy-
perexponential solution exp(−x)xk+1. As pointed out in Ex-
ample 2, there are infinitely many rank-one ideals contain-
ing I. Consequently, I has infinitely many different hyperex-
ponential solutions, although two hyperexponential elements
with constant ratio are usually considered to be equal. 2

In this paper, we merely treat hyperexponential elements as
a convenient way to represent effective rank-one ideals. By
“given (computing) a hyperexponential element”, we mean
that we are given (computing) its certificate(s). Note that,
if h is hyperexponential with respect to all the ∂i’s, then its
certificates r1, . . . , rn must satisfy (5).

6. SIMILARITY
In this section, we introduce the notion of similarity among

hyperexponential elements. This notion helps us organize
possibly infinitely many different hyperexponential solutions
into finitely many equivalence classes. The notion of simi-
larity is well known in the ordinary case [17] and has been
extended to the partial differential case in [16]. In the fol-
lowing we first characterize the condition that an ideal of
rank one can have a nonzero rational solution.

Proposition 3. A rank-one ideal of A has a nonzero so-

lution in F if and only if it has a basis
(
∂1 − ∂1•s1

s1

)
, . . . ,(

∂n − ∂n•sn
sn

)
, where s1, . . . sn are nonzero elements of F,

and (5) is satisfied when r1, . . . , rn are replaced by ∂1•s1
s1

,

. . . , ∂n•sn
sn

, respectively.

Proof The necessity is trivial. Let p be the differential
index ρ(A). The proposition follows from Lemma 3.1 if p is
equal to n. Thus we assume that p < n, and hence σn 6= 1.

We proceed by induction on n. If n = 1, then s1 is the
solution. Assume that the proposition holds for (n−1). For
all i with (p + 1) ≤ i ≤ (n− 1), (5) becomes

σn

(
σi(si)

si

)
σn(sn)

sn
= σi

(
σn(sn)

sn

)
σi(si)

si
.

It follows that

σn

(
σi(ti)

ti

)
=

σi(ti)

ti
, where ti = si

sn
(9)

so that σi(ti)
ti

is a ∂n-constant. Since A is orthogonal, we

have σi(ti)
ti

∈ Fn. For all j with 1 ≤ j ≤ p, (5) becomes

σn

(
δj(sj)

sj

)
σn(sn)

sn
=

σn(sn)

sn

δj(sj)

sj
+δj

(
σn(sn)

sn

)
. (10)

Since σj = 1, expanding the last term of (10) yields

δj

(
σn(sn)

sn

)
=

snδj ◦ σn(sn)− σn(sn)δj(sn)

s2
n

. (11)

Replacing the last term of (10) by the right hand side of (11),

and moving σn(sn)
sn

from the left hand side of (10) to the right
hand side, we get

σn

(
δj(sj)

sj

)
=

δj(sj)

sj
+

δj ◦ σn(sn)

σn(sn)
− δj(sn)

sn
.

Using the identity on logarithmic derivatives:

δj(a)

a
− δj(b)

b
=

δj(f)

f
, where f = a

b
, (12)

and σn

(
δj(sj)

sj

)
=

δj◦σn(sj)

σn(sj)
, we see that

σn

(
δj(tj)

tj

)
=

δj(tj)

tj
, where tj =

sj

sn
. (13)

Hence,
δj(tj)

tj
belongs to Fn by the same reason. A te-

dious but straightforward calculation verifies that, for i, j =
1, . . . , n − 1, (5) is satisfied when rk is replaced by ∂k•tk

tk

for k = 1, . . . , n− 1 (One would see that such a verification
is just a repetition of the calculation to get (9) or (13)).
Hence, by induction, the rank-one ideal in Fn[∂1, . . . , ∂n−1]

generated by
(
∂1 − ∂1•t1

t1

)
, . . . ,

(
∂n−1 − ∂n−1•tn−1

tn−1

)
, has a

nonzero solution r in Fn. We claim that rsn is a solu-

tion of I. The operator
(
∂n − ∂n•sn

sn

)
annihilates rsn, be-

cause r is a ∂n-constant. If i > p, then σi(rsn)
rsn

= σi(si)
si

since
(
∂i − ∂i•ti

ti

)
annihilates r. It follows that

(
∂i − ∂i•si

si

)
annihilates rsn. If j ≤ p,

(
δj(r)

r
− δj•tj

tj

)
= 0. By (12)

δj(rsn)

rsn
=

δj(sj)

sj
and hence,

(
∂j− ∂j•sj

sj

)
annihilates rsn. 2

Let h1 and h2 be hyperexponential over F with respect
to ∂i. We say that h1 and h2 are similar with respect to ∂i

(denoted by h1 ∼i h2) if their ratio is the product of a
∂i-constant and a rational function of F. If h1 and h2 are
hyperexponential over F, then h1 and h2 are similar (de-
noted by h1 ∼ h2) if their ratio is the product of a constant
and a rational function of F. Both ∼i and ∼ are equivalence



relations. The ∂i-constant in the definition of the similar-
ity ∼i should be explicitly stated, because it may be not a
∂j-constant when j 6= i, and, in general, it is not an element
of F. In the univariate case such a constant may be ignored.
Clearly, h1 ∼i h2 (1 ≤ i ≤ n) if h1 ∼ h2. The converse
follows from the next lemma.

Lemma 4. Two hyperexponential elements h1 and h2 are
similar if and only if h1 ∼i h2 for all i with 1 ≤ i ≤ n.

Proof Assume that h1 ∼i h2, for i = 1, . . . , n and denote
by h the ratio of h1 and h2. Then h = c1s1, . . . , h = cnsn,
where ci is a ∂i-constant and si ∈ F. Thus ∂1 • h=c1∂1 • s1,
. . . , ∂n • h = cn∂n • sn. These two equations imply

∂1 • h

h
=

∂1 • s1

s1
, . . . ,

∂n • h

h
=

∂n • sn

sn
. (14)

It follows that ∂1•s1
s1

, . . . , ∂n•sn
sn

satisfy (5) when ri is re-

placed by ∂i•si
si

. By Proposition 3, there exists s ∈ F such

that ∂i•s
s

= ∂i•si
si

, for i = 1, . . . , n. Equation (14) implies

that both h and s are nonzero solutions of the ideal gener-

ated by
(
∂1 − ∂1s1

s1

)
, . . . ,

(
∂n − ∂nsn

sn

)
. Consequently, h is

the product of s and a nonzero constant. 2

The next lemma extends Theorem 5.1 in [17].

Lemma 5. Let h1, . . . , hm be hyperexponential elements
with respect to ∂k in a Φ-compatible field. If there exist
nonzero ∂k-constants c1, . . . , cm, and nonzero rational func-
tions r1, . . . , rm such that (c1r1h1 + · · · + cmrmhm) = 0,
then hi ∼k hj for some 1 ≤ i < j ≤ m.

Proof If ∂k is a σ-shift operator, then the proof is the same
as that of Theorem 5.1 in [17], which works verbatim in the
differential case. 2

Due to the existence of Wronskian and Casoratian de-
terminants (see [12, p. 271]), each P in F[∂i] has at most(
deg∂i

P
)

linear independent solutions over a field of con-
stants with respect to ∂i. This fact combined with Lemma 5
implies that

Corollary 6. If h1, . . . , hm are pairwise dissimilar hy-
perexponential solutions of P in F[∂i] with respect to ∂i,
then m is no more than the degree of P in ∂i.

7. RATIONAL SOLUTIONS
In this section, we briefly describe an algorithm for ra-

tional solutions of a rectangular system Q = {Q1, . . . , Qn},
where Qi ∈ F[∂i]. Such an algorithm is needed in Section 9.

Assume that we are able to find rational solutions for
each of the Qi’s. Let qi1, . . . , qimi be a basis of the ra-
tional solutions of Qi. Let g be the least common multiple
of the denominators of all the qij ’s, where i = 1, . . . , n and
j = 1, . . . , mi. We claim that g is a common denomina-
tor of all rational solutions of Q. For, otherwise, suppose
that a rational solution r can be written as p/(ug), where
p, u ∈ C[x1, . . . , xn] and gcd(p, ug) = 1. If degxi

u > 0, then
r = p̄/(ūg), where p̄ and ū are in C[x1, . . . , xn] and the de-
gree of ū in xi equals zero, because r is a rational solution
of Qi, and so its denominator divides g over Fi[xi]. These
two expressions of r imply that u divides ū, a contradiction.
Thus, each rational solution of Q can be written as f/g, in
which the polynomial f is yet to be determined. Regard-
ing f as a new unknown and applying the Qi’s to f/g yields

a rectangular system P = {P1, . . . , Pn} whose polynomial
solutions are the numerators of the rational solutions of Q.

Now, assume that we can find polynomial solutions for
each of the Pi’s. Let pi1, . . . , pimi be a basis of the polyno-
mial solutions of Pi. Then max(degxi

pi1, . . . , degxi
pimi) is

a degree bound for all the polynomial solutions of P in xi

(1 ≤ i ≤ n). Using these bounds, we can then compute all
polynomial solutions of P by solving a linear system over C.

Example 7. Let A be given in Example 1. We compute
the rational solutions of the rectangular system:

(x− k)∂2
x + 2∂x, and

(x− k − 2)(k + 2)E2
k − 2(x− k − 1)(k + 1)Ek + (x− k)k.

The first equation has rational solutions (c1 + c2x)/(x− k),
where c1 and c2 are ∂x-constants. The second equation has
rational solutions (c3 + c4k)/((x− k)xk), where c3 and c4

are Ek-constants. Thus, rational solutions of the system
have a common denominator (x − k)xk. Applying the two
operators to p/((x− k)xk), where p is an indeterminate, we
see that p satisfies

x2∂2
x − 2x∂x + 2, and E2

k − 2Ek + 1.

The first operator has polynomial solutions c5x+c6x
2, where

c5 and c6 are ∂x-constants while the second has polynomial
solutions c7 + c8k, where c7 and c8 are Ek-constants. Thus
the polynomial solutions of the second system are of the form

g = c9 + c10x + c11k + c12xk + c13x
2,

where c9, . . . c13 are constants. Substituting g into the second
system gives c9 = 0 and c11 = 0. The rational solutions of
the first system are c10 + c12k + c13x/(k(x− k)). 2

In our algorithm for computing hyperexponential solutions,
rectangular systems are all consistent and of minimal de-
grees. Therefore, there is no need to compute Gröbner basis
to check the consistency of the system. The reader is referred
to [1, 6, 3, 8] for algorithms to compute polynomial and ra-
tional solutions of ordinary linear functional equations.

In addition to the assumptions that we can compute ra-
tional solutions of ordinary linear functional equations, we
further assume that we can solve

Problem P. Given an automorphism σ of F and a nonzero
element a of F, find a nonzero c in C such that the equation

σ(z) = caz (15)

has a nonzero solution in F.
If σ is the shift or q-shift operator, the algorithms in [1] can

be easily adapted to solve Problem P, because the universal
denominator of all rational solutions of (15) does not depend
on the constant c. This assumption will be used in Section 9.

Example 8. Find a nonzero rational number c and a
nonzero rational function z of Q(x, k) such that

σ(z) =
c(k − x)z

k − x + 1

where σ is the automorphism of Q(x, k) sending x to x and k
to (k + 1). A denominator of z is (k − x) according to [1].
Hence, we need only to find c and a polynomial f such
that σ(f) = cf . Hence, c has to be 1 and f can be cho-
sen as 1 as well. The equation then has a solution 1/(k−x)
for c = 1 and has no rational solutions for other values of c.



8. COMMON ASSOCIATES
The basic idea we use to solve Problem H is to compute

hyperexponential solutions of an ideal I of finite rank, and
then use Proposition 2 to get the effective rank-one ideals
containing I. The ineffective ones can be obtained by an
easy recursive process as such ideals must contain ∂i for
some i with ρ(A) < i ≤ n.

Let H be the set of hyperexponential solutions of I, and
let {P1, . . . , Pn} be a rectangular system contained in I, in
which Pi ∈ F[∂i] for all i with 1 ≤ i ≤ n. Denote by Hi the
set of hyperexponential solutions of Pi with respect to ∂i.
Since H ⊂ Hi, H is empty if one of the Hi’s is empty.
Assume that all the Hi’s are nonempty. Although each of
the Hi’s is infinite, the set H̄i = Hi/ ∼i is finite by Corol-
lary 6. Since an element h of H is similar to an element
of Hi with respect to ∂i, h must belong to an equivalence
class in H̄i for all i with 1 ≤ i ≤ n. This observation moti-
vates us to introduce

Definition 3. For i = 1, . . . , n, let hi be hyperexponen-
tial with respect to ∂i. A hyperexponential element h is called
a common associate of hi if h ∼i hi, for i = 1, . . . , n.

Our approach involves two basic steps. First, we search for
dissimilar common associates of elements in H1 × · · · ×Hn,
a finite number modulo ∼ since H̄1 × · · · × H̄n is finite.
Let G be the set of dissimilar common associates. Then ev-
ery element h of H is similar to one and only one g ∈ G by
Lemma 4 and so h = crg for some rational function r and a
constant c. The second step is to determine r by applying
the Pj ’s to rg with r treated as an unknown. Since g is hy-
perexponential, the applications of the Pj ’s result in another
rectangular system, and r is one of its rational solutions.

9. COMPUTING COMMON ASSOCIATES
In this section, we present an algorithm to construct com-

mon associates. Common associates reduce Problem H to
finding rational solutions of some rectangular systems. Due
to page limitations we now assume that n = 2 and leave the
general result to a forthcoming technical report.

The next theorem, which is our main result, relates com-
mon associates to rational solutions of some nonlinear equa-
tions. These equations can be easily solved.

Theorem 7. Let A2 = F[∂1, ∂2] be an orthogonal Ore
ring, and let hi be hyperexponential with respect to ∂i with
certificate ui, i = 1, 2. Then h1 and h2 have a common as-
sociate if and only if one of the following conditions holds:

1. Differential case. If σ1 = σ2 = 1, then

δ1

(
δ2(z)

z

)
= δ1u2 − δ2u1 (16)

has a rational solution.

2. σ-Shift case. If σ1 6= 1 and σ2 6= 1, then

σ1

(
σ2(z)

z

)
=

u1σ1(u2)

u2σ2(u1)

σ2(z)

z
(17)

has a rational solution.

3. Mixed case. If σ1 = 1 and σ2 6= 1, then

δ1

(
σ2(z)

z

)
=

u1u2 + δ1(u2)− σ2(u1)u2

u2

σ2(z)

z
(18)

has a rational solution.

Moreover, suppose there exists such a rational solution z.
Let p1 and p2 be the numerator and denominator of z, re-
spectively. Then

q1 =
σ1(p1)

p1
u1 +

δ1(p1)

p1
, q2 =

σ2(p2)

p2
u2 +

δ2(p2)

p2
(19)

are respective ∂1 and ∂2-certificates of a common associate
of h1 and h2.

Proof First, we assume that h is a common associate of h1

and h2. Then

h = c1r1h1 and h = c2r2h2, (20)

where r1, r2 ∈ F are nonzero, and c1, c2 are ∂1 and ∂2-
constants, respectively. Applying operators ∂1 to the first
equation and ∂2 to the second in (20) then gives ∂1 • h = c1(σ1(r1)∂1 • h1 + δ1(r1)h1)

∂2 • h = c2(σ2(r2)∂2 • h2 + δ2(r2)h2).
(21)

Equations (20) and (21) imply

∂1 • h =

(
σ1(r1)

r1
u1 +

δ1(r1)

r1

)
︸ ︷︷ ︸

w1

h (22)

and

∂2 • h =

(
σ2(r2)

r2
u2 +

δ2(r2)

r2

)
︸ ︷︷ ︸

w2

h. (23)

Let J be the ideal generated by (∂1 − w1) and (∂2 − w2).
Since h is a solution of J , the ideal is of rank one, and, hence,
the compatibility condition (5) implies that

σ2(w1)w2 + δ2(w1) = σ1(w2)w1 + δ1(w2). (24)

Set z to be the rational function r1/r2.

Differential case. Since both σ1 and σ2 are 1, (24) becomes

δ2

(
u1 +

δ1(r1)

r1

)
= δ1

(
u2 +

δ2(r2)

r2

)
,

which implies (16) because δ1 and δ2 commute.

σ-Shift Case. Since both δ1 and δ2 are 0, (24) becomes

σ2 ◦ σ1(r1)

σ2(r1)

σ2(r2)

r2
σ2(u1)u2 =

σ1 ◦ σ2(r2)

σ1(r2)

σ1(r1)

r1
σ1(u2)u1,

which implies (17) because σ1 and σ2 commute.

Mixed case. Since σ1 = 1 and δ2 = 0, we have

w1 = u1 +
δ1(r1)

r1
and w2 =

σ2(r2)

r2
u2.

Set f = σ2(r2)
r2

. Then the left hand side L of (24) becomes:

L = u2σ2(u1) f +
σ2 ◦ δ1(r1)

σ2(r1)︸ ︷︷ ︸
a1

fu2,

and the right hand side R of (24) becomes:

u1u2f+
δ1(r1)

r1︸ ︷︷ ︸
a2

fu2+δ1(u2)f+
δ1 ◦ σ2(r2)

r2︸ ︷︷ ︸
a3

u2−
δ1(r2)

r2︸ ︷︷ ︸
a4

fu2.



Set v = u1u2+δ1(u2)−σ2(u1)u2
u2

. It follows from L = R that

(a4 − a2)f + a1f − a3 = vf.

Hence, (a4 − a2) +
(
a1 − a3

f

)
= v. Since (a4 − a2) = − δ1(z)

z

and a1 − a3
f

= δ1(σ2(z))
σ2(z)

, we find by logarithmic derivatives

(see (12)) that (18) holds.
Conversely, assume that z = p1/p2 with p1, p2 ∈ C[x1, x2]

is a nonzero rational solution of (16) in the differential case,
that of (17) in the σ-shift case, and that of (18) in the mixed
case. Reversing the respective arguments to get (16), (17)
and (18), we see that (24) holds in all three cases when r1

and r2 are replaced by p1 and p2, respectively. Thus, the
ideal J̃ generated by

∂1 −
(

σ1(p1)

p1
u1 +

δ1(p1)

p1

)
, ∂2 −

(
σ2(p2)

p2
u2 +

δ2(p2)

p2

)
is of rank one and clearly effective. Proposition 2 then im-
plies that J̃ has a hyperexponential solution h. We shall
verify that h is a common associate for the mixed case with
differential and σ-shift cases handled in a similar manner.
Recall ui = ∂i•hi

hi
, for i = 1, 2. Thus, applying the first

generator to h yields

δ1(h)

h
=

δ1(h1)

h1
+

δ1(p1)

p1
=

δ1(p1h)

p1h
,

since σ1 = 1. The ratio of h and p1h1 is a ∂1-constant,
because of the logarithmic derivatives (see (12)) and ∂1 = δ1.
Similarly, applying the second operator to h yields

σ2(h)

h
=

σ2(p2)

p2

σ2(h2)

h2
,

since δ2=0. Thus, h/(p2h2) is a ∂2-constant since ∂2=σ2. 2

An algorithm for computing rational solutions of (16) is
presented in [16]. To compute rational solutions of (17)
and (18), we need a technical lemma. For a nonzero ra-
tional function r ∈ C(x1, x2) with numerator a and denom-
inator b, let the contents of a and b with respect to x1 be a1

and b1, respectively. Normalize a1, b1 ∈ C[x2] to be monic.
We call a1/b1 the univariate part of r, denoted by uv1(r),
and r/uv1(r) the bivariate part, denoted by bv1(r).

Lemma 8. If r ∈ C(x1, x2) is nonzero, then

σ2(uv1(r)) = cuv1(σ2(r)) and σ2(bv1(r)) = bv1(σ2(r))/c

for some c ∈ C. Moreover, if s ∈ C(x1, x2) is nonzero,
then uv1(rs) = uv1(r)uv1(s) and bv1(rs) = bv1(r)bv1(s).

Proof Since A2 is orthogonal, σ2(x2) is in C[x2] with pos-
itive degree and σ2(x1) = x1. So σ2(uv1(r)) is in C(x2).
Write the numerator of bv1(r) as a polynomial in x1 with
coefficients, say p1, . . . , pm in C[x2]. Since p1, . . . , pm’ are
relatively prime, so are σ2(p1), . . . , σ2(pn). The same argu-
ment applies to the denominator of bv1(r). Thus, σ2(uv1(r))
and uv1(σ2(r) can only differ by a multiplicative constant.
So we can assume that σ2(uv1(r)) = c uv1(σ2(r)). It follows
that σ2(bv1(r)) = bv1(σ2(r))/c. The last two equalities hold
by Gauss’s lemma. 2

For the σ-shift case, we set v = u1σ1(u2)
u2σ2(u1)

and y = σ2(z)
z

.

Equation (17) then becomes

σ1(y) = vy and σ2(z) = yz. (25)

First, we compute a nonzero rational solution of the first
equation in (25). If there are no such solutions, then (17)

has no rational solution. Assume now that f is such a solu-
tion. It follows that all rational solutions of the first equation
of (25) are in form af where a is an arbitrary nonzero ele-
ment in C(x2). Our task is to decide for which a the second
equation of (25) has a nonzero rational solution g(x1, x2).
Second, assume σ2(g) = afg, so bv1(σ2(g))=bv1(afg). By
Lemma 8, c1σ2(bv1(g)) = bv1(a)bv1(f)bv1(g). Since bv2(a)
is in C, we have σ2(bv1(g)) = c bv1(f)bv1(g). Consequently,
there are nonzero z ∈ F and c ∈ C such that

σ2(z) = c bv1(f)z. (26)

Note that such a z is a rational solution of (17), because the
function c bv1(f) is a solution of the first equation of (25).
The problem of finding rational solutions of (17) is so re-
duced to Problem P described in Section 7.

For the mixed case, set v=(u1u2 + δ1(u2)− σ2(u1)u2)/u2

and y = σ2(z)/z. Equation (18) then becomes

δ1(y) = vy and σ2(z) = yz. (27)

In the same vein, we compute a nonzero rational solution f
of the first equation in (27), and then, find a nonzero rational
function z ∈ F and a nonzero constant c ∈ C that solve (26).
Such a rational function z is a solution of (18).

Example 9. Let A be as in Example 1. We compute the
common associate of h1= exp(−x)xk+1 and h2=kxk/(x−k).
The system (27) becomes

∂y(x, k)

∂x
= vy(x, k) and z(x, k + 1) = cbvk(y)z(x, k),

where v = −1
(x−k)(x−k−1)

and c ∈ C. The first equation has

a rational solution y = (k − x)/(k − x + 1). The second
then has a solution 1/(k − x) with c = 1 (see Example 8).
By Theorem 7, a common associate of h1 and h2 has ∂x-
certificate (1 + k − x)/x and Ek-certificate (k + 1)x/k. The
associate can be written as k exp(−x)xk+1. 2

We can now outline an algorithm for hyperexponential so-
lutions of an ideal I with finite rank. Assume that we are
given a finite basis of I. First, we compute a Gröbner basis
of I and then use linear algebra to construct a rectangu-
lar system P = {P1, P2} contained in I. In fact, the rect-
angular system will be of minimal degrees. We then find
the set Hi of hyperexponential solutions of Pi with respect
to ∂i, for i = 1, 2. If one of the Hi’s is empty, then I has no
hyperexponential solution. Otherwise we choose dissimilar
elements hi1, . . . , himi such that any element of Hi is similar
to one and only one hiji . For each pair (h1j1 , h2j2), we then
use Theorem 7 to compute a common associate, discarding
pairs without common associates. If no common associate is
found then we are done. Otherwise assume that the common
associates are h1, . . . , hm. Then, for each k = 1, . . . , m, ap-
ply the Pi’s to rhk to obtain a new rectangular system Qk

over F, since ∂i • hk = uikhk with uik ∈ F. Find ratio-
nal solutions of Qk. If no rational solution is found, dis-
card hk. Write the general rational solution rk of Qk as a
linear combination of rational functions, in which unspeci-
fied constants appear linearly. Apply each operator in the
given basis to rkhk to get a linear algebraic system in these
constants and solve these linear systems.

Example 10. Let A be as in Example 1 and let us find
hyperexponential solutions of the rank-four ideal given in Ex-
ample 2. We use the Maple command DEtools[expsols]



to find that all hyperexponential solutions of L1 are simi-
lar to h1 = exp(−x)xk+1 with respect to ∂x. Likewise, the
command LREtools[hypergeomsols] finds that all hyperex-
ponential (hypergeometric) solutions of L2 are similar to the

term h2 = kxk

x−k
with respect to Ek. As shown in Example 9,

a common associate of h1 and h2 is h = k exp(−x)xk+1.
Hence, all hyperexponential solutions of I are similar to h.
Apply L1 and L2 to rh to get a new rectangular system
(in r), which is the first system in Example 7. Taking the
rational solution of the system from Example 7, we conclude
that the ideal I has hyperexponential solutions in the form

c1 + c2k + c3x

x− k
exp(−x)xk+1. 2

Example 11. Consider the shift algebra given in Exam-
ple 5. We compute the hyperexponential (hypergeometric)
solutions of the ideal I generated by

L1 = E2
m + 18+(m−k)(9−(m+k)(m+k+1))

(m−k)(m+k−3)−3
Em

+ 3(4k2−10k+(m−k)(2k−5+(m+k)(m+k−1)))
(m−k)(m+k−3)−3

and

L2 = E2
k −

2+(m−k)(4(m+k)(m+k+1)−1)
(m−k)(2m+2k−1)+1

Ek

+ (m−k)((m+k)(4m+4k−2)+−8k)−16k2

(m−k)(2m+2k−1)+1
.

The operators L1 and L2 form a Gröbner basis of I. The
hyperexponential solutions of L1 with respect to Em are ei-
ther similar to h11=3m or to h12=Γ(m + k), while the hy-
perexponential solutions of L2 are either similar to h21=1
or to h22=2kΓ(m+k). The pairs (h11, h22) and (h21, h22)
have no common associates, because the system (25) for
each of the pairs has no rational solution. On the other
hand, the pair (h11, h21) has a common associate h1 = 3m,
and (h12, h22) has a common associate h2 = 2kΓ(m + k).
Hence, the hyperexponential solutions of I are in the form of
either r1h1 and r2h2, where r1, r2 are in C(m, k). Using the
algorithm given in Section 7, we get r1=(m− k) and r2=1.
The hyperexponential solutions of I are then c1(m − k)3k

and c22
kΓ(m + k), where c1 and c2 are constants. 2
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