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Abstract

The present paper applies the characteristic set method of algebraic
differential polynomials to give a mechanical procedure which permits
us to prove non-trivial theorems in the local theory of surfaces. By
this method, we have discovered a new relation between the first and
second fundamental forms of a surface in case this surface contains no
umbilici. A few examples are given to illustrate the method

In 1989 Wu Wen tsun [Wu, 1989] gave a constructive theory of the
characteristic set (abbreviated as char-set) method of general algebraic dif-
ferential polynomials (abbreviated as d-pols) based on the works of Riquier,
Janet, Cartan, Thomas and Ritt. One of the applications of this method
is mechanical theorem-proving (abbreviated as MTP) in differential geome-
tries. In the case of a single independent variable, this method is quite
similar to the char-set method in the algebraic case. There have been sev-
eral papers applying it to the MTP of space curves, cf. [Chou & Gao,
1989, 1990]. In the case of two or more independent variables, the char-set
method is much more complicated than that of a single variable because
of the presence of integrability conditions. Consequently, the MTP of the
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surface theory becomes rather difficult in practice since the computation
of integrability conditions is costly. However, as shown in the rest of this
paper, some non-trivial theorems can still be proved mechanically by this
method when we translate geometric statements by means of the frames on
surfaces.

The paper is organized as follows In Section 1 we give a brief description
of the char-set method of d-pols. For more details, please refer to [Wu, 1989]
and [Wu, 1991]. In Section 2 some experiments and results of studying the
fundamental equations of surface are given. In Section 3 we illustrate this
method by means of three examples.

1 A survey of the char-set algorithm of algebraic
differential polynomials

We assume that the following polynomials involve two independent vari-
ables u and v. In fact, all of statements in this section can be extended to
any finite number of variables.

1.1 Ordering of indeterminates

Let K be an algebraic field of characteristic 0 which admits two opera-
tions of differentiation, that is, each element a of K has two partial deriva-
tives ∂a

∂u and ∂a
∂v . These symbols may merely distinguish the derivatives.

Each of the two operations satisfies, for anya, b ∈ K,

∂(a + b)
∂u

=
∂a

∂u
+

∂b

∂u
,

∂ab

∂u
=

∂a

∂u
b +

∂b

∂u
a,

where u can be replaced by v, and

∂

∂v

∂a

∂u
=

∂

∂u

∂a

∂v
.

K is called a differential field. For example, K may be Q(u, v), the field
of rational functions in u and v.

We use indeterminates X1, X2, ..., Xn. With each Xk are associated
symbols

∂i+jXk

∂ui∂vj
,
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where i and j are non-negative integers. These are the partial derivatives of
Xk.

K being given, a d-pol is a polynomial in the derivatives of X1, X2, ..., Xn

with coefficients over K. We can then introduce partial differentiations sat-
isfying the ordinary rules in the calculus. It is easy to see that the set of all
d-pols with ordinary algebraic and differential operations forms a differential
polynomial ring which we will denote by K{X1, X2, ..., Xn}.

Notation. For brevity, we denote the partial derivative ∂i+jXk
∂ui∂vj by ∂δXk

in which δ = (i, j).

Let ∆ be the set {∂δ|δ = (i, j), i and j are non − negative integers}.
The set ∆ may be regarded as the free commutative monoid generated by
∂1,0 and ∂0,1 with an identity ∂0,0 and the composition of differentiations,
namely,

∂i,j∂k,l = ∂i+k,j+l.

In the remainder of this paper we shall write ∂ij instead of ∂i,j , for in-
stance, ∂23 instead of ∂2,3 since no derivative appearing in this paper will
have order more than 9.

Definition 1. Let < be an ordering on ∆ that is compatible with the
monoid structure, i.e.

1. ∂00 < ∂lk for all (l, k) 6= (0, 0).

2. ∂α < ∂β implies that ∂δ∂α < ∂δ∂β for all ∂α, ∂β, ∂δ ∈ ∆.

We call such an ordering < an admissible ordering on ∆.

Definition 2. Let {∂δXk|∂δ ∈ ∆, k ∈ {1, 2, ...n}} be denoted by {X}
and < be an ordering on {X} that is compatible with differentiation, i.e.

∂αXm > ∂βXk =⇒ ∂δ∂αXm > ∂δ∂βXk.

We call such an ordering < an admissible ordering on {X}.
Let the order and the class of ∂ijXk be, resp., i + j and k. By fixing an

admissible ordering on {X}, we can write a d-pol P in the form

P = I(∂αXk)d + I1(∂αXk)d−1 + lower terms,
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where ∂αXk is the highest derivative occurring in P and d is the degree of
P w.r.t. ∂αXk. We may introduce the following terminologies to describe a
d-pol.

Definition 3. Let < be an admissible ordering on {X} and P in K{X1, ..., Xn}
but not in K,

1. The highest derivative occurring in P is called the lead of P , denoted
by ld(P ).

2. The order of the lead of P is called the order of P , denoted by ord(P ).

3. The class of the lead of P is called the class of P , denoted by class(P ).

4. The highest degree of P w.r.t. its lead is called the degree of P , denoted
by deg(P ).

5. The leading coefficient of P w.r.t. its lead is called the initial of P ,
denoted by init(P ).

6. The formal partial derivative of P w.r.t. its lead is called the separant
of P , denoted by sep(P ).

Remark 1. One can easily see that sep(P ) is the initial of any proper
derivative of a d-pol P .

1.2 Ordering of d-pols and ascending sets

We now introduce a partial ordering on K{X1, X2, ..., Xn} as follows:

Definition 4. Let P and Q be non-zero d-pols, then we say that P is
higher than Q or that Q is lower than P if they satisfy either (1) or (2).

1. Q ∈ K, but P not in K.

2. Both Q and P are not in K and either ld(P ) > ld(Q) or ld(P ) = ld(Q)
and deg(P ) > deg(Q).

In this case we write P � Q. If neither Q ≺ P nor P ≺ Q hold, then we say
that P and Q are incomparable in order and write P ∼ Q.

Definition 5. A non-zero d-pol Q is said to be reduced w.r.t. a d-pol
P that is not in K if no proper derivatives of ld(P ) occur in Q, and either
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ld(P ) does not occur in Q or ld(P ) occurs in Q with a degree lower than
deg(P ).

Definition 6. An ascending set Φ is either a single non-zero element in
K and is then said to be trivial or a finite sequence of d-pols none of which
are in K,

Φ : P1, P2 , ..., Pr

such that P1 ≺ P2 ≺ ... ≺ Pr and each Pi is reduced w.r.t. preceding Pj , for
j < i.

Definition 7. Given two non-trivial ascending sets

Φ1 : P1 P2 , ..., Pr,

Φ2 : Q1 Q2 , ..., Qs.

We shall say that Φ2 is higher than Φ1 or that Φ1 is lower than Φ2 and write
Φ1 ≺ Φ2 if either (1) or (2) below holds.

1. There is some k ≤ min(s, r) such that Pi ∼ Qi for i < k and Pk ≺ Qk.

2. s < r and Pi ∼ Qi for all i ≤ r.

If neither Φ1 ≺ Φ2 and Φ2 ≺ Φ1 hold, then we say that Φ1 and Φ2 are
incomparable in order and write Φ1 ∼ Φ2.

Remark 2. Any non-trivial ascending set is said to be higher than any
trivial one.

Definition 8. Let Ψ be a set of d-pols. A subset of Ψ is called a basic
set of Ψ if it is any lowest ascending set contained in Ψ.

1.3 Remainder

Computing remainders of a d-pol w.r.t. an ascending set is a basic pro-
cedure in the char-set method. Let us start with two technical definitions

Definition 9. An IS-product of a non-trivial ascending set Φ is any power
product of initials and separants of d-pols in Φ.

Remark 3. IS-products of a non-trivial an ascending set play a role in
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specifying degenerate cases for geometric theorems.

Definition 10. A d-pol R is said to be reduced w.r.t. a non-trivial as-
cending set Φ if R is reduced w.r.t. each d-pol in Φ.

Remainder Theorem. For any d-pol P and a non-trivial ascending set Φ

Φ : F1 F2, ..., Fr,

there is an IS-product J of Φ such that

JP =
∑
k,δk

Akδk
∂δk

(Fk) + R,

in which k runs over a finite subset of non-negative integers, δk runs over a
finite subset of ∆, Akδk

is a d-pol, and R is reduced w.r.t.Φ. R is called a
remainder of P w.r.t. Φ.

The above formula is then called the remainder formula which is obtained
by applying pseudo division successively w.r.t. an admissible ordering on
{X}. In this procedure we have to choose some of the proper derivatives of
Fk as divisor polynomials.

1.4 The completion of an ascending set

Given a non-trivial ascending set Φ

Φ : F1, F2, ..., Fr.

we shall now define the completion of Φ.

Definition 11.

1. For 1 ≤ k ≤ r, derivatives of leads of Fk in Φ are called the principal
derivatives of Φ.

2. For 1 ≤ k ≤ r, the leads of Fk in Φ are called leading derivatives or
proper principal derivatives of Φ, while other principal derivatives are
called improper derivatives of Φ.

3. The derivatives that are not principal are called parametric derivatives.

4. lpairp(Φ):={(i, j)| ∂ijXp is a lead of some Fk in Φ}.
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5. maxp(Φ) := (m1,m2), where mi is the maximal integer of the ith
coordinate of all pairs in lpairp(Φ), for i = 1, 2.

6. We say that (i, j) is a multiple of (i1, j1) if i ≥ i1 and j ≥ j1 hold ,
and in this case write (i, j) � (i1, j1) or (i1, j1) � (i, j).

7. cpairp(Φ) := {(i, j)|(i1, j1) � (i, j) � maxp(Φ), (i1, j1) ∈ lpairp(Φ)}

For the pair (i, j) ∈ cpairp(Φ)− lpairp(Φ), let us form a remainder of ∂ijXp

w.r.t. Φ and denote it by hij,p. Then J∂ijXp − hij,p is a linear combination
of derivatives of Fk in Φ, where J is a IS-product of Φ.

Definition 12. The d-pol J∂ijXp − hij,p is called a derived d-pol of Φ
w.r.t (i, j) and p.

Let the set of all derived polynomials be

{G1, G2, ..., Gs}.

Definition 13. The sequence consisting of all Fi (1 ≤ i ≤ r) and Gj

(1 ≤ j ≤ r) arranged in increasing order

(Φ+) : H1, H2, ..., Hg

(g = r + s) is called the completion of Φ.

Remark 4. The initials and separants of Hk in (Φ+) are all IS-products
of Φ.

1.5 The integrability polynomials of an ascending set

Let a non-trivial ascending set

F1, F2, ..., Fr

denoted by Φ be given with its completion

(Φ+) : H1, H2, ..., Hg.

Definition 14. An M-derivative M of Φ is a d-pol of the form

M = ∂i1i2Hk
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with ld(Hk) = ∂j1j2Xp, and ik = 0 if jk < mk where k = 1, 2 and
(m1,m2) = maxp(Φ).

Definition 15. An M-product of Φ is a product of d-pols, one of which
is an M-derivative.

Definition 16. An M-polynomial of Φ is a linear sum of M-products whose
coefficients are d-pols in leading and parametric derivatives alone.

Consider any d-pol P in some M-derivatives and other parametric or
principal derivatives of Φ. Suppose that among the improper principal
derivatives not appearing in M-products of P , the highest one is ∂l1l2Xp,
then let

max
p

(Φ) = (m1,m2),

(j1, j2) = (min(l1,m1),min(l2,m2)),

and
(i1, i2) = (l1 − j1, l2 − j2).

It is easy to see that (j1, j2) ∈ cpairp(Φ), and if lq < mq, then iq = 0 for
q = 1, 2. Hence there exists a Hk in (Φ+) such that ld(Hk) = ∂j1j2Xp.
Moreover ∂i1i2Hk is an M-derivative with the lead ∂l1l2Xp. Then we have

J1∂l1l2Xp = ∂i1i2Hk + U

where J1 is an IS-product of Φ, and U is a d-pol in parametric and principal
derivatives lower than ∂l1l2Xp. Replacing ∂l1l2Xp in P by

∂i1i2Hk + U

J1

and clearing denominators, we get a d-pol P1 = J
′
1P , J

′
1 being a power

of J1, in such a form which involves the M-derivatives and the new one
M = ∂i1i2Hk, and other parametric, proper and improper principal deriva-
tives lower than ∂l1l2Xp.

Definition 17. The above procedure for obtaining P1 = J
′
1P from P is

called an M-reduction of P .

In P there may still be, besides the parametric derivatives, some leading
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derivatives not yet present in the M-products. Suppose that the highest
such leading derivatives ∂j1j2Xp , whose corresponding d-pol in Φ is Fi, has
degree d ≥ deg(Fi) = di. By performing pseudo division of (∂j1j2Xp)d and
Fi w.r.t ld(Fi), we then have

J2(∂j1j2Xp)d = QFk + V

where J2 is an IS-product of Φ, Q is a d-pol, and V is a d-pol lower than
(∂j1j2Xd)di . Replacing (∂j1j2Xp)d in P by

QFk + V

J2

and clearing denominators, we get a d-pol P2 = J2P in such a form which
involves the M-derivatives and a new one Fk, other parametric, improper,
and proper principal derivatives lower than ld(Fi)di .

Definition 18. The above procedure for obtaining P2 from P is called
an I-reduction of the d-pol P .

It is clear that in applying successive M- and I-reductions we will fi-
nally arrive at a d-pol

JP = M + N

possessing the following properties:

1. J is a certain IS-product of Φ.

2. M is a M-polynomial for Φ.

3. N is a d-pol containing parametric and leading derivatives alone.

4. The leading derivatives in M and N not already appearing in the M-
derivatives each have a degree less than the degree of those derivatives
in the corresponding d-pol Fi of Φ.

Definition 19. In the above formula the d-pols M and N are called resp.
the M-part and N-part of P .

We shall now show how to compute the integrability polynomials of
Φ by means of M- and I-reductions. Consider any Hh of (Φ+) with lead
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∂j1j2Xp such that either j1 < m1 or j2 < m2. Without loss of generality,
assume that j1 < m1. Then we have

Hh = I(∂j1j2Xp)d + lower terms

where I = init(Hh). Moreover, we get

∂10Hh = S∂(j1+1)j2Xp + U,

where S = sep(Hh), and U is a d-pol lower than ∂(j1+1)j2Xp. As j1 < m1,
it is clear that

(j1 + 1, j2) ∈ cpairp(Φ)− lpairp(Φ).

Thus ∂(j1+1)j2Xp is the lead of some Hk in (AS+). We then have

Hk = I
′
∂(j1+1)j2Xp + V

where I
′
= init(Hk) and V is a d-pol lower than ∂(j1+1)j2Xp. It follows that

I
′
∂10Hh − SHk = W1

where W1 is a d-pol lower than ∂(j1+1)j2Xp.
We can form W2 in the same way if j2 < m2.

Definition 20. The N-part of the above d-pol W1 (resp., W2) is called
the integrability d-pol of Φ of index 1 (resp., index 2)corresponding to Hh.

Definition 21. A non-trivial ascending set is said to be passive if all its
integrability d-pols are zero.

Passivity Theorem If an ascending set Φ is passive, then all derivatives
of any d-pol in (Φ+), when multiplied by some IS-product of Φ, have their
N-parts equal to zero. Moreover, any such derivative, say P , can be written
in the form

JP = J
′
M + R

where M is an M-derivative having the same lead as that of the given deriva-
tive P , while R is an M-polynomial in which all M-derivatives are lower than
P .
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1.6 The Char-sets of a differential polynomial set

Let Ψ be a finite set of d-pols and < an admissible ordering on {X}.
Zero(Ψ) denotes the differential algebraic set defined by Ψ. For any d-pol
G, Zero(Ψ/G) denotes the subset of Zero(Ψ) for which G 6= 0. By the
following algorithm Charset, we can obtain a passive ascending set Φ such
that the remainders of all d-pols in Ψ with respect to Φ are zero. This
algorithm basically consists of pseudo division, and the M- and I-reductions
introduced in the previous sections.

Algorithm Charset

Input: Ψ (a finite set of d-pols).
Output: Φ (an ascending set w.r.t. <).

(1) [Initialization]
Ψ0 := Ψ;
BS0:= a basic set for Ψ0;
RS0:= the set of all non-trivial remainders of d-pols in Ψ0 w.r.t. BS0;
HS0:= the set of all non-trivial integrability conditions for Ψ0

i := 0;
(2) [Loop]

While RSi 6= ∅ or HSi 6= ∅ do
i := i + 1;
Ψi := Ψi−1 ∪RSi−1 ∪HSi−1;
BSi:= a basic set for Ψi;
RSi:= the set of all non-trivial remainders of d-pols in Ψi w.r.t.

BSi;
HSi:=the set of all non-trivial integrability conditions for Ψi

end{while}
(3) [Done]

Φ := BSi;
Return Φ;

Remark 5. We exit from this algorithm as long as a non-zero element
in K appears in either RSi or HSi, for i = 0, 1, . . .. In this case the input
system Ψ is inconsistent.
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Remark 6. In this algorithm the set of d-pols Ψ is enlarged to Ψi for
i = 1 2 . . ., while the Zero(Ψi) = Zero(Ψ) holds throughout the while-loop
since each d-pol in RSi−1 or HSi−1 can be expressed as a linear combination
of d-pols in PSi−1 and their derivatives.

It can be shown that the basic-sets

BS0 � BS1 ...

are decreasing in order so that the construction should end in a finite number
of steps and at a certain stage t we should have both RSt = ∅ and HSt = ∅.

Definition 22. The corresponding ascending set Φ in Algorithm Charset
is called a passive (differential) char-set of the given d-pol-set Ψ.

Theorem (Well-Ordering Principle) Let Φ be a passive char-set of the
given differential polynomial set Ψ, Ii and Si the initials and separants of
differential polynomials in Φ, and J some IS-product of Φ. Then

Zero(Φ/J) ⊂ Zero(Ψ) ⊂ Zero(Φ), (I)

Zero(Ψ) = Zero(Φ/J)
⋃

(∪iZero(Ψ′
i))

⋃
(∪iZero(Ψ′′

i )). (II)

In these formulas Ψ′
i = Ψ ∪ {Ii} and Ψ′′

i = Ψ ∪ {Si}.

Remark 7. Φ must be passive by the assumption of the well-ordering
principle. In fact, it suffices to derive relation (I) and (II) if RSk = ∅, for
some non-negative integer k in the Algorithm Charset.

1.7 A basic principle of MTP

The char-set method is able to prove the theorems whose hypothesis
and conclusion can be formulated in terms of d-pols. Hence we have the
following definitions.

Definition 23. A theorem consists of a d-pol set called the hypothesis
set and a d-pol called the conclusion d-pol.

Definition 24 Let the hypothesis set and the conclusion polynomial of
a theorem T be resp. H and C. Then we say

1. T is true if
Zero(H) ⊂ Zero(C).
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2. T is generically true under non-degeneracy conditions

Gi 6= 0.

for degenerate polynomials Gi if

Zero(H/
∏

Gi) ⊂ Zero(C).

Remark 8. A zero in Zero(H) is nothing but a geometrical configuration
verifying the hypothesis of the theorem T and Zero(H) is just the algebraic
differential set of all such geometrical configurations.

Using the notation of Definition 24, we state the following principle.

Principle of MTP (weak form) If the remainder R of C w.r.t. a char-
set of HY P is identical to 0, then the theorem T with hypothesis set H
is generically true under the non-degeneracy conditions Ii 6= 0 and Si 6= 0
where Ii and Si are the initials and separants of this char-set, respectively.

There are three principles of MTP corresponding to different forms of zero
structure theorems for an algebraic differential set. The examples shown in
the following sections are only based on the principle mentioned above. An-
other way to prove theorems mechanically in differential geometries is based
on the calculation of differential dimension of differential quasi-algebraic
sets, cf. [Ferro & Gallo, 1990].

2 Studying the fundamental equations of surface
theory by the char-set method

In this section we shall try to compute a characteristic set of the fun-
damental equations of surfaces. To do this we first introduce an admissi-
ble ordering on the variables to be handled and then apply the algorithm
Charset to these equations. As shown below, although it is difficult to ob-
tain a char-set for the general form of the fundamental equations of surfaces,
some interesting results can still be obtained during this computation.
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2.1 The fundamental equations of surface theory

Suppose that a surface S is generated by the movement of the tip of a
position vector

~r = ~r(u, v) = (x(u, v), y(u, v), z(u, v))

in which x(u, v), y(u, v), and z(u, v) are functions of u and v possessing as
many derivatives as may be required. The first fundamental form is defined
as follows:

I = Edu2 + 2Fdudv + Gdv2

where E = ∂~r
∂u ·

∂~r
∂u , F = ∂~r

∂u ·
∂~r
∂v and G = ∂~r

∂v ·
∂~r
∂v . Here “ ·” means the dot

product of two vectors.
When the tangent vectors ∂~r

∂v and ∂~r
∂v at any point ~r(u, v) are not parallel,

we may find a unit normal vector ~n(u, v), which is perpendicular to the
tangent plane at the point on S, by computing the vector product of partial
derivative vectors ∂~r

∂v and ∂~r
∂v at the point, that is,

~n(u, v) =
∂~r
∂u ×

∂~r
∂v

| ∂~r
∂u ×

∂~r
∂v |

The order in which we take the vector product determines the direction of
~n(u, v).

The vectors ∂~r
∂u , ∂~r

∂v and ~n(u, v) constitute a moving frame on S denoted
by [~r;~ru, ~rv, ~n]. The second fundamental form is given by

II = Ldu2 + 2Mdudv + Ndv2

where L = − ∂~r
∂u ·

∂~n
∂u , M = − ∂~r

∂u ·
∂~n
∂v = − ∂~r

∂v ·
∂~n
∂u , and N = − ∂~r

∂v ·
∂~n
∂v .

By differentiating the frame [~r;~ru, ~rv, ~n], we may obtain the fundamental
equations of surface theory. Let u = u1, v = u2, ∂~r

∂u = ~r1, and ∂~r
∂v = ~r2. Then

we may write these equations as follows:

(2.1)



∂~r
∂uα = ~rα α = 1 2

∂~rα

∂uβ =
∑2

δ=1 Γδ
αβ~rδ + bαβ~n α, β = 1 2

∂~n
∂uα = −

∑2
δ=1 bδ

α~rδ α = 1 2

where the Γδ
αβ ’s are the Christoffel symbols of the second kind which are

rational functions of E, F , G and their derivatives, bαβ and bδ
α are rational
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functions of L, M , N , E, F , and G. For the definitions of Γδ
αβ , bαβ and

bδ
α, please refer to [Carmo, 1976]. One may observe that the denominators

of these rational functions are EG− F 2, which is non-zero by its geometric
meaning.

2.2 Computing char-sets of the fundamental equations of
surface theory

There are two reasons for computing a passive char-set of the fundamen-
tal equations of surface. The first is to derive Gauss’s theorem mechanically,
and the second is to find the general passive char-set of the fundamental
equations since we often put some of the fundamental equations or their
integrability conditions into the hypothesis set of the theorem to be me-
chanically proved.

The Gauss’s Theorem may be stated as follows:

Theorem (Theorema Egregium) The Gaussian curvature LN−M2

EG−F 2 is de-
termined by the first fundamental form of surface S.

In order to compute the char-set of the fundamental equations, we should
first translate (2.1) into d-pols and arrange the variables occurring in (2.1)
in a proper order. Since all the coefficients in (2.1) are rational functions of
L, M , N , E, F , G and their derivatives, we can order L, M , N , E, F , G
and the vectors ~r, ~ru, ~rv, ~n as well as their derivatives.

Let
E = X1, F = X2, G = X3,
L = X24 M = X25, N = X26,
~ru = X32, ~rv = X33, ~n = X34.

Furthermore, let Λ1 be the set consisting of X1, X2, X3 and their derivatives,
Λ2 the set consisting of X24, X25, X26 and their derivatives, and Λ3 the
set consisting of X32, X33, X34 and their derivatives. We introduce an
admissible ordering on Λ = Λ1 ∪ Λ2 ∪ Λ3 as follows:

1. For any two pairs of non-negative integers, (i, j) and (l, k), ∂ij > ∂kl

iff either i + j > k + l or i + j = k + l and j > l.

2. For any ∂ijXp, ∂klXq ∈ Λi, where i = 1, 2, 3, ∂ijXp > ∂klXq iff either
∂ij > ∂kl or ∂ij = ∂kl and p > q.
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3. For any ∂ijXp ∈ Λm and ∂klXq ∈ Λn, ∂ijXp > ∂klXq iff m > n.

One may easily verify that such an ordering is admissible.
We can now rewrite (2.1) in terms of d-pols in Λ. After removing trivial

and extraneous equations, we have

(2.2)



p1 = (∂01X34)(X3X1 −X2
2 ) + X33X26X1 −X33X25X2

−X32X26X2 + X32X25X3

p2 = (∂10X34)(X3X1 −X2
2 ) + X33X25X1 −X33X24X2

−X32X25X2 + X32X24X3

p3 = 2(∂01X33)(X3X1 −X2
2 )− 2X34X26(X3X1 −X2

2 )
−X33((∂01X3)X1 + (∂10X3)X2 − 2(∂01X2)X2)
+X32((∂01X3)X2 + (∂10X3)X3 − 2(∂01X2)X3)

p4 = 2(∂10X33)(X3X1 −X2
2 )− 2X34X25(X3X1 −X2

2 )
−X33((∂10X3)X1 − (∂01X1)X2)
+X32((∂10X3)X2 − (∂01X1)X3)

p5 = 2(∂01X32)(X3X1 −X2
2 )− 2X34X25(X3X1 −X2

2 )
−X33((∂10X3)X1 − (∂01X1)X2)
+X32((∂10X3)X2 − (∂01X1)X3)

p6 = 2(∂10X32)(X3X1 −X2
2 )− 2X34X24(X3X1 −X2

2 )
−X33(2(∂10X2)X1 − (∂01X1)X1 − (∂10X1)X2)
+X32((2∂10X2)X2 − (∂01X1)X2 − (∂10X1)X3)

According to the ordering introduced before, (2.2) is itself an ascending
set. We then compute the derived d-pols of (2.2). Note that X32, X33 and
X34 are linearly independent vectors which represents the moving frame ~ru,
~rv and ~n. Therefore, during the computation we may replace any linear
homogeneous d-pol in X32, X33 and X34 by the d-pols obtained from the
coefficients of this d-pol w.r.t. X32, X33 and X34. Hence we get a d-pol, say
F , in the from

F = X24X26 −X2
25 + F ∗

where F ∗ is a d-pol in Q[Λ1]. From Remark 6 in Section 1.6 it follows
that F vanishes on the zero set defined by (2.2). In other words, Theorema
Egregium has been derived mechanically. Moreover, it is easy to check that
F = 0 gives us the formula for computing the Gaussian curvature by means
of E, F and G and their derivatives.

The intermediate d-pols of this derivation are too lengthy to be shown
here. For more details, please refer to [Li, 1991].

We are able to obtain the completion of (2.2) which consists of 9 d-
pols. In accordance with our general method described in Section 1, we
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should compute integrability d-pols of (2.2). But we meet some intermediate
polynomials that are too big to manipulate on our computer.

Consider a simple case. Let X2 = X25 = 0 (M = F = 0), i.e. we suppose
that there is no umbilicus point on S. Then the fundamental equations can
be expressed in terms of X1, X3, X24, X26, X32, X33 and X34 as follows:

(2.3)



pp1 = (∂01X34)X3 + X33X26

pp2 = (∂10X34)X1 + X32X24

pp3 = 2(∂01X33)X3X1 − 2X34X26X3X1

−X33(∂01X3)X1 −X32(∂10X3)X3

pp4 = 2(∂10X33)X3X1 −X33(∂10X3)X1 −X32(∂01X1)X3

pp5 = 2(∂01X32)X3X1 −X33(∂10X3)X1 −X32(∂01X1)X3

pp6 = 2(∂10X32)X3X1 − 2X34X24X3X1

+X33(∂01X1)X1 −X32(∂10X3)X1

In the same way we get the derived polynomials of (2.3) as follows:

(2.4)



pp10 = 2(∂10X26)X3X1 −X26(∂10X3)X1 −X24(∂10X3)X3

pp11 = 4X26X24X3X1 + 2(∂20X3)X3X1 − (∂01X3)(∂01X1)X1

−(∂10X3)2X1 − (∂10X3)X3(∂10X1) + 2X3(∂02X1)X1

−X3(∂01X1)2

pp12 = 8(∂01X24)X24X
2
3X1 − 4X2

24X
2
3 (∂01X1)

+2(∂20X3)X3(∂01X1)X1 − (∂01X3)(∂01X1)2X1

−(∂10X3)2(∂01X1)X1 − (∂10X3)X3(∂01X1)(∂10X1)
+2X3(∂02X1)(∂01X1)X1 −X3(∂01X1)3

Please notice that pp11 is the formula for computing the Gaussian cur-
vature by means of X1, X3 and their derivatives in the case X2 = X25 = 0.
During the computation of the integrability d-pols of (2.3) with derived
polynomials (2.4), it is interesting to note that we obtained an intermediate
d-pol, P , with 434 terms. This d-pol can be written as

P = X24P
∗,

in which P ∗ takes X24 as its lead with deg(P ∗) = 4, the coefficients of P
w.r.t. X24 are d-pols involving only X1, X2, and X3. It is clear that P
vanishes on Zero((2.3)). In consideration of pp11 and P , we can conclude
that the second fundamental form is algebraically determined by the first
fundamental form in case there is no umbilic point on S.
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Remark 9. If X24 is identical to zero, then S is developable.

Unfortunately, the passive char-set of (2.3) has not yet been obtained
since we ran out of memory on a Sun-3/50 using REDUCE.

3 Examples

In order to control the size of intermediate expressions, the following strate-
gies are quite helpful.

Formulate the hypothesis and conclusion of a theorem by means of
moving frames on surfaces and put Gauss-Codazzi equations into the
hypothesis set.

In the algorithm Charset, supposing that RSi is empty at some stage
i, then we try to compute a remainder of the conclusion d-pol w.r.t. the
basic set BSi. If this d-remainder is identical to 0, then this theorem
is generically true under some non-degeneracy conditions (See Remark
6 in Section 1.6).

The following examples are chosen from [Chen, 1990].

Example 1. Show that, if a surface ~r = ~r(u, v) has two unequal con-
stant principal curvatures, then the surface is a cylinder.

We may choose the parameters (u, v) as the lines of curvatures since the
principal curvatures at every point on the surface are unequal. Hence the
first and second fundamental forms are

I = Edu2 + Gdv2 and II = Ldu2 + Ndv2

The conclusion can be expressed as

1. v-curves are straight lines, that is,

∂01~r × ∂02~r = 0.

2. the curvature of u-curves is a constant, that is,

∂10(
| ∂10~r × ∂20~r |
| ∂10~r |3

) = 0
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and
∂01(

| ∂10~r × ∂20~r |
| ∂10~r |3

) = 0

3. the torsion of u-curves is zero, that is,

(∂10~r × ∂20~r) · ∂30~r = 0.

Here | |, · and × mean the length of a vector, dot product, and vector
product , respectively.

From the assumption of this example we obtain the hypothesis set as
follows

(3.1)



p1 = num(∂10(X24
X1

)) = 0
p2 = num(∂01(X24

X1
)) = 0

p3 = num(∂10(X26
X3

)) = 0
p4 = num(∂01(X26

X3
)) = 0

p5 = 2(∂10X26)X3X1 −X26(∂10X3)X1 −X24(∂10X3)X3

p6 = 4X26X24X3X1 + 2(∂20X3)X3X1 − (∂01X3)(∂01X1)X1

−(∂10X3)2X1 − (∂10X3)X3(∂10X1) + 2X3(∂02X1)X1

−X3(∂01X1)2

p7 = 8(∂01X24)X24X
2
3X1 − 4X2

24X
2
3 (∂01X1)

+2(∂20X3)X3(∂01X1)X1 − (∂01X3)(∂01X1)2X1

−(∂10X3)2(∂01X1)X1 − (∂10X3)X3(∂01X1)(∂10X1)
+2X3(∂02X1)(∂01X1)X1 −X3(∂01X1)3

in which num(R) means the numerator of the rational expression R, p1, p2,
p3 and p4 imply that two principal curvatures of this surface are constants,
and p5, p6, p7 are the Gauss-Codazzi equations of the surface.

By means of the fundamental equations of surface theory, the conclusion
can be expressed in terms of [~r; ~ru, ~rv, ~n] and Christoffel symbols of the
second kind. Hence we have the following conclusion polynomials:

c1 = X15

c2 = X26

c3 = 2(∂10X24)X24X
2
1 − 2X2

24(∂10X1)X1

+2(∂10X16)X16X1 − 3X2
16(∂10X1)

c4 = 2(∂01X24)X24X
2
1 − 2X2

24(∂01X1)X1

+2(∂01X16)X16X1 − 3X2
16(∂01X1)

c5 =
√

X1X29X
2
24X3 +

√
X3(∂10X24)X16

−
√

X1X24X18X16X3 −
√

X1X24(∂01X16)X3

−
√

X1X24X16X12X3 +
√

X3X24X16X12
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in which X12 = Γ1
11, X15 = Γ1

22, X16 = Γ2
11 and X18 = Γ2

21, moreover, we
have X29 = b1

2 = 0 since M = F = 0. In the actual computation we may
treat the square root

√
X as a new indeterminate satisfying

√
X

2 −X = 0.
c1 and c2 mean that v-curves are straight lines, c3 and c4 imply that the
curvatures of all u-curves are a single constant, and c5 implies that u-curves
are planar curves.

Let us take the admissible ordering defined in Section 2. We may obtain
the following char-set of the hypothesis set in accordance with the algorithm
Charset

(3.2)



p1 = X26

p2 = ∂01X24

p3 = (∂10X24)X1 −X24(∂10X1)
p4 = ∂10X3

p5 = ∂01X1

All the remainders are identical to zero w.r.t. (3.2). In computing the
char-set we remove some factors, e.g. X26X1 −X24X3, which are non-zero
because the two principal curvatures are assumed to be unequal.

Remark 10. We get p1 = X24X26 from the algorithm Charset. If X24 = 0,
then we may swap the positions of u and v in the conclusions.

Example 2. Assume that both S1 and S2 do not contain any umbilici
and have non-zero Gaussian curvatures. There is a map φ between S1 and
S2 which preserves the normal curvature with every tangent at every point.
Prove that there exists a rigid motion such that S1 coincides with S2.

Suppose that the principal directions at a point on S1 is in the direction
of the parameter lines u = constant and v = constant. Hence the first and
second fundamental forms of S1 are, resp.,

I1 = E1du2 + G1dv2

and
II1 = L1du2 + N1dv2.

Under the correspondence of φ, (u, v) is also a regular parametric system
of S2. Furthermore the u-curve and the v-curve of S2 are also the lines of
curvature since φ preserves principal curvatures at every point. Thus the
first and second fundamental forms of S2 are, resp.,

I2 = E2du2 + G2dv2
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and
II2 = L2dv2 + N2dv2.

We can then formulate the hypothesis under such a choice of parameters
as:

(3.3)
E1du2 + G1dv2

L1du2 + N1dv2
=

E2du2 + G2dv2

L2du2 + N2dv2
.

Let E1 = X1, G1 = X2, E2 = X3, G2 = X4, L1 = X5, N1 = X6, L2 = X7,
and N2 = X8, then the hypothesis set is as follows

(3.4)



p1 = X7X1 −X5X3

p2 = X8X2 −X6X4

p3 = X6X1 + X7X2 −X6X3 −X5X4

p4 = X6(∂01X1)X1 − 2(∂01X5)X2X1 + X5X2(∂01X1)
p5 = 2(∂10X6)X2X1 −X6(∂10X2)X1 −X5(∂10X2)X2

p6 = X8(∂01X3)X3 − 2(∂01X7)X4X3 + X7X4(∂01X3)
p7 = 2(∂10X8)X4X3 −X8(∂10X4)X3 −X7(∂10X4)X4

p8 = 4X6X5X2X1 + 2(∂20X2)X1 − (∂01X2)(∂01X1)X1

−(∂10X2)2X1 − (∂10X2)X2(∂10X1)
+2X2(∂02X1)X1 −X2(∂01X1)2

p9 = 4X8X7X4X3 + 2(∂20X4)X4X3 − (∂01X4)(∂01X3)X3

−(∂10X4)2X3 − (∂10X4)X4(∂10X3)
+2X4(∂02X3)X3 −X4(∂01X3)2

where p1, p2, and p3 are equivalent to (3.3), p4, p5, p8 and p6, p7, p9 are
the Gauss-Codazzi equations of S1 and S2 respectively. By the fundamental
theorem of the surface theory, the conclusions expressed in terms of X ′s are

(3.5)

c1 = X8 −X6

c2 = X7 −X5

c3 = X4 −X2

c4 = X3 −X1

A char-set of the hypothesis set consists of seven d-pols of which the largest
one has 22 terms. The remainders of all ci’s are identical to zero w.r.t. the
char-set. In the computation we remove all the factors X5, X6, X7, and X8

since the Gaussian curvatures of S1 and S2 are non-zero.

Example 3 If T is an isometric correspondence between two planes, then
T is a rigid motion.
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Assume that the two planes are P1 and P2 with the first fundamental forms
I1 = du2+dv2 and I2 = (dX1)2+(dX2)2 respectively. The mapping between
these two parametric coordinates of P1 and P2 induced by T is

(3.7)

{
X1 = X1(u, v)
X2 = X2(u, v)

Then the hypothesis set is made up of the following equations.

(3.6)


p1 = (∂10X2)2 + (∂10X1)2 − 1
p2 = (∂01X2)2 + (∂01X1)2 − 1
p3 = (∂10X2)(∂01X2) + (∂10X1)(∂01X1)

with a non-degenerate condition

∂(X1, X2)
∂(u, v)

6= 0

The conclusion d-pols are the nine d-pols

c1 = (∂10X1)2 + (∂10X2)2 − 1,

c2 = (∂01X1)2 + (∂01X2)2 − 1,

c3 = (∂10X2)(∂10X1) + (∂01X2)(∂01X1),

c4 = ∂20X1 c5 = ∂02X1 c6 = ∂11X1,

c7 = ∂20X2 c8 = ∂02X2 c9 = ∂11X2,

where c1, c2 and c3 imply that the Jacobian matrix of X1(u, v) and X2(u, v)
is orthogonal. c4 . . . c9 imply that each entry of this matrix is a constant.

The char-set of the hypothesis set is {(∂01X1)2+(∂10X1)2−1, ∂20X1, p1, p3},
in which ∂20X1 is a factor of the following d-pol that is obtained by com-
puting integrability d-pols

(∂10X1)(∂20X1)((∂10X1)(∂01X2)− (∂10X2)(∂01X1))

The third factor is non-zero since it is just the non-degenerate condition. If
the first one is zero, then we get the hypothesis set as follows:

(3.9)


(∂01X2)2 − 1 = 0
∂10X2 = 0
∂10X1 = 0
(∂10X1)2 − 1 = 0
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Therefore, the theorem holds immediately.
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