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Abstract

The subresultant theory for univariate commutative poly-
nomials is generalized to Ore polynomials. The general-
ization includes: the subresultant theorem, gap structure,
and subresultant algorithm. Using this generalization, we
de�ne Sylvester's resultant of two Ore polynomials, derive
the respective determinantal formulas for the greatest com-
mon right divisor and least common left multiple of two Ore
polynomials, and present a fraction-free version of the non-
commutative extended Euclidean algorithm.

1 Introduction

Greatest common right divisors (abbreviated as: gcrd) and
least common left multiples (abbreviated as: lclm) are ba-
sic objects in the theory and computation of Ore polyno-
mials [11, 2, 3]. For example, the gcrd of linear ordinary
di�erential (shift) operators represents the intersection of
their solution spaces, and the lclm of these operators repre-
sents the sum of their solution spaces. The non-commutative
Euclidean and extended Euclidean algorithms are used to
compute gcrd's and lclm's, respectively. Naive applications
of these two algorithms lead to ine�cient implementations
because of the coe�cient growth of intermediate polynomi-
als, as seen in the commutative case. Motivated by the im-
provements made on the commutative Euclidean algorithm,
we generalize the subresultant theory for univariate commu-
tative polynomials to univariate Ore polynomials. This gen-
eralization provides a way to control the coe�cient growth
in the non-commutative Euclidean and extended Euclidean
algorithms.

The commutative subresultant theory has undergone a
quite intensive study since the work of Collins, Brown and
Traub [6, 4, 9, 10]. Chardin presented a subresultant theory
for linear ordinary di�erential operators [5]. In this paper
we present a subresultant theory for Ore polynomials over
a commutative domain, which includes not only linear or-
dinary di�erential operators but also linear shift operators,
q-di�erence operators, etc. The subresultant theory can be
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further extended to linear inhomogeneous di�erential and
di�erence equations [7], but we will not present this exten-
sion because most of the applications of subresultants are
found in an Ore polynomial ring.

To extend the commutative subresultant theory, we will
overcome two di�culties. First, we need to �nd new tech-
niques to prove essentially the same statements as those in
the commutative case without assuming the commutativity
of multiplication. This problem is solved by Lemma 3.1.
Second, we need to simplify �-factorial expressions in or-
der to remove extraneous factors. We also remark that it
looks rather complicated to adapt the approach in [9, 10] to
extend the commutative subresultant theory, because it is
not trivial to build up a generic coe�cient domain for Ore
polynomials.

Applications of the subresultant theory include: comput-
ing gcrd's [8]; extending Sylvester's resultant to Ore poly-
nomials (De�nition 6.1), expressing the gcrd and lclm of
two Ore polynomials by determinants (Proposition 6.1), and
computing lclm's (Proposition 6.2). The correspondence be-
tween subresultants and intermediate polynomials occurring
in the Euclidean algorithm is also useful to estimate coe�-
cient and degree bounds, and to analyze complexities.

The organization of this paper is as follows. Section 2
introduces Ore polynomial rings, speci�es the notation that
will be used later, and de�nes subresultants. Section 3
presents the row-reduction formula for subresultants, which
makes it possible to extend the techniques for establishing
commutative subresultant theory in [6, 4]. The subresultant
theorem for Ore polynomials is proved in Section 4. The sub-
resultant algorithm is described in Section 5. Applications
are presented in Section 6.

2 Preliminaries

Let R be a commutative domain and � an injective endo-
morphism from R to itself, which is called a conjugate op-
erator. An endomorphism � of the additive group (R;+; 0)
is called a pseudo-derivation with respect to � if

�(ab) = �(a)�(b) + �(a)b; for all a; b 2 R.

The (non-commutative) multiplication in R[X] is de�ned by
the commutation rule

Xa = �(a)X + �(a); for all a 2 R. (1)

The triple (R[X]; �; �) is called an Ore polynomial ring. For
A;B 2 R[X], the product of A and B is denoted by AB and
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the degree of AB is equal to the sum of the degrees of A
and B. The conjugate operator � and pseudo-derivation �
can be uniquely extended to the quotient �eld ofR by letting
�(a=b) = �(a)=�(b) and �(a=b) = (b�(a)� a�(b)) =(�(b)b);
for a; b 2 R with b 6= 0 (see [7, Proposition 2.2]).

Example 1 Denote the identity and null mappings on R

by 1 and 0, respectively. The ring (R[X]; 1;0) is the ring of
usual commutative polynomials over R. If D is a derivation
operator on R, then the ring (R[X]; 1; D) is isomorphic to
the ring of linear homogeneous di�erential polynomials in
one di�erential indeterminate over R: If E is an injective
endomorphism of the domain R, then the ring (R[X]; E;0)
is isomorphic to the ring of linear homogeneous di�erence
polynomials in one di�erence indeterminate (with respect
to E) over R.

We denote (R[X]; �; �), �(r) and �(r) by R[X], �r and �r,
respectively. For A 2 R[X], the leading coe�cient of A is
denoted by lc(A). An easy induction shows that

lc(Xn
A) = �

nlc(A); for all n 2 N: (2)

De�nition 2.1 Let r 2 R. The nth �-factorial of r is the
product

n�1Y
i=0

�
i
r; for all n 2 Z+,

which is denoted by r[n]. In addition, r[0] is set to be 1:

The next lemma holds because � is a ring homomorphism.

Lemma 2.1 If r; s 2 R, and m;n 2 N; then

1. (rs)[m] = r[m]s[m];

2. r[m+n] = r[m](�mr)[n];

3. (r[m])[n] = (r[n])[m]; (de�ne r[m][n] as (r[m])[n]),

4. r[m+1][n+1] = r[m+n+1](�r)[m][n]:

De�nition 2.2 For A;B 2 R[X] with degA = m and
degB = n � 0, a pseudo-remainder of A and B is either A,
if m < n; or C 2 R[X] such that degC < degB and 

m�nY
i=0

lc(Xi
B)

!
A = QB + C; Q 2 R[X]:

We call Q the (left) pseudo-quotient of A and B.

The pseudo-remainder of A and B is unique and denoted
by prem(A;B): By (2) we get the pseudo-remainder formula

lc(B)[m�n+1]
A = QB + prem(A;B): (3)

Let A1; A2; : : : ; Ak�1; Ak be a sequence of non-zero el-
ements of R[X] such that Ai is R-linearly dependent on
prem(Ai�2; Ai�1), for i = 3; . . . k; and prem(Ak�1; Ak) = 0:
Such a sequence is called a polynomial remainder sequence
(abbreviated as: p.r.s.) of A1 and A2. We will show that any
member of a p.r.s. of A1 and A2 is R-linearly dependent on
a subresultant of A1 and A2 (Corollary 5.3).

Now, we recall the de�nition of determinant polynomi-
als [9, 10] and de�ne subresultants.

De�nition 2.3 Let M be an r� c matrix over R. Assume
that r � c. The determinant polynomial of M is

jM j=

c�rX
i=0

det(Mi)X
i
;

where Mi is the r� r matrix whose �rst (r� 1) columns are
the �rst (r� 1) columns of M and whose last column is the
(c� i)th column of M , for i = 0, . . . , c� r.

We will encounter determinants whose last columns contain
polynomials in R[X] n R. When expanding such a determi-
nant, we place the product of entries in R on the left-hand
side of the entry in R[X] n R. With this convention we can
express determinant polynomials by determinants. Let the
matrix M in De�nition 2.3 be0

B@
m11 � � � m1;r�1 m1r � � � m1c

m21 � � � m2;r�1 m2r � � � m2c

� � � � � � � � � �

mr1 � � � mr;r�1 mrr � � � mrc

1
CA

and, for i = 1; : : : ; r, let

Hi = mi1X
c�1 + � � �+mirX

c�r + � � � +mic:

Then

jM j= det

0
B@

m11 � � � m1;r�1 H1

m21 � � � m2;r�1 H2

� � � � � �

mr1 � � � mr;r�1 Hr

1
CA : (4)

Thus a determinant polynomial is alternative and multi-
linear for its rows.

Let A : A1; A2; : : : ; Ar be a sequence of polynomials
inR[X] and let d be the maximum of the degrees of the Ai's.
The matrix associated with A, denoted by mat(A), is the
r � (d+ 1) matrix whose entry in the ith row and jth col-

umn is the coe�cient of Xd+1�j in Ai, where 1 � i � r
and 1 � j � d + 1. If r � d + 1, then the determinant
polynomial of A is de�ned to be jmat(A)j, which is denoted
by j A1; A2; : : : ; Ar j or j A j :

Lemma 2.2 Let r 2 R with r 6= 0; and A 2 R[X]: If

Hm =j : : : ; Xm(rA); Xm�1(rA); : : : ; X(rA); rA; : : : j

is a determinant polynomial of a polynomial sequence in
R[X], where m 2 N; then

Hm = r
[m+1]

j : : : ; X
m
A;X

m�1
A; : : : ; XA; A; : : : j :

Proof We proceed by induction on m: The assertion is
trivial when m = 0: Assume that m > 0 and the lemma is
true for m� 1: Thus,

Hm = r
[m]

j : : : ; X
m(rA);Xm�1

A; : : : ; XA;A; : : : j : (5)

It follows from [8, Lemma 4.1] that Xm(rA) in (5) can be
replaced by (�mr)(XmA):

De�nition 2.4 Let A;B 2 R[X] with degA = m and
degB = n; where m � n. The nth subresultant of A and B
is B. For j = n� 1; n� 2; . . . , 0; the jth subresultant of A
and B, sresj(A;B); is

j X
n�j�1

A; : : : ; XA; A;| {z }
n�j

X
m�j�1

B; : : : ; XB; B| {z }
m�j

j;

The sequence S(A;B): A;B; sresn�1(A;B); : : : ; sres0(A;B);
is called the subresultant sequence of A and B.
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Example 2 Let A = a2X
2 + a1X + a0 and B = b2X

2 +
b1X + b0: Then

sres1(A;B) = j A;B j =

���� a2 A
b2 B

���� ;
and

sres0(A;B) = j XA;A;XB;B j

=

�������
�a2 �a2 + �a1 �a1 + �a0 XA
0 a2 a1 A
�b2 �b2 + �b1 �b1 + �b0 XB
0 b2 b1 B

������� :

Note that the jth subresultant has degree no greater than j,
and that all the subresultants of A and B are contained in
the left ideal generated by A and B because of (4). The
next lemma links sresn�1(A;B) and prem(A;B).

Lemma 2.3 If A and B are the same as in De�nition 2.4,
then sresn�1(A;B) = (�1)m�n+1prem(A;B):

Proof The lemma is proved by the following calculation:

lc(B)[m�n+1]sresn�1(A;B)

= j lc(B)[m�n+1]
A; X

m�n
B; : : : ; B j

= j prem(A;B); Xm�n
B; : : : ; B j (by (3))

= (�1)m�n+1
j X

m�n
B; : : : ; B; prem(A;B) j

= (�1)m�n+1lc(B)[m�n+1]prem(A;B):

3 Row-Reduction Formula for Subresultants

Some proofs in the commutative subresultant theory are tac-
itly based on the following property: if i is a positive integer,
and A and B are two univariate commutative polynomials
in the indeterminate X, then

X
iprem(A;B) = prem(Xi

A;X
i
B):

However, this equality no longer holds when A and B are
Ore polynomials. To establish a subresultant theory for
Ore polynomials, we replace this property by the property
that if A and B are in R[X], then the di�erence between

Xiprem(A;B) and prem(XiA;XiB) is an R-linear com-

bination of Xi�1A; : : : ; XA;A;XdegA�degB+iB; : : : ; XB;B
(see [8, Lemma 4.2]). This replacement allows us to prove
the row-reduction formula (6), by which the techniques for
proving the commutative subresultant theorem is extended.

Lemma 3.1 Let A;B 2 R[X] with respective degrees m
and n, where m � n � 0. If there exist non-zero ele-
ments q; r; s 2 R and F;G 2 R[X] such that qB = rF
and sresn�1(A;B) = sG, then, for 0 � j � n, we have

q
[m�j]lc(B)[m�n+1][n�j]sresj(A;B) =

r[m�j]s[n�j] j Xm�j�1F; : : : ; F; Xn�j�1G; : : : ; G j : (6)

Proof Let C = prem(A;B), Ck = prem(XkA;XkB), for
k 2 N, and Sj = sresj(A;B). By De�nition 2.4 we have

Sj =j X
n�j�1

A; : : : ; XA; A;| {z }
n�j

X
m�j�1

B; : : : ; XB; B| {z }
m�j

j :

The pseudo-remainder formula for Xn�j�1A and Xn�j�1B
implies that the polynomial

�
n�j�1(lc(B))[m�n+1]

X
n�j�1

A� Cn�j�1

is an R-linear combination of the polynomials

X
m�j�1

B; : : : ; X
n�j

B;X
n�j�1

B:

Thus, Lemma 4.2 in [8] implies that the polynomial

�
n�j�1(lc(B))[m�n+1]

X
n�j�1

A�X
n�j�1

C

is an R-linear combination of the polynomials

X
n�j�2

A; : : : ; XA; A;X
m�j�1

B; : : : ; XB; B:

Hence, we have

�
n�j�1(lc(B))[m�n+1]

Sj

=j Xn�j�1C;Xn�j�2A; : : : ; A; Xm�j�1B; : : : ; B j : (7)

The same reasoning allows us to replace XiA by XiC on
the right-hand of (7), while at the same time multiplying

by the power �i(lc(B))[m�n+1] on the left-hand of (7), for
i = n� j � 2; n� j � 3; . . . , 0. We eventually arrive at

lc(B)[n�j][m�n+1]
Sj

= j Xn�j�1C;Xn�j�2C; : : : ; C; Xm�j�1B; : : : ; B j :

Lemma 2.3 then asserts that

lc(B)[n�j][m�n+1]
Sj

=j Xm�j�1B; : : : ; B; Xn�j�1Sn�1; : : : ; Sn�1 j :

Thus, the lemma follows from Lemma 2.2.

4 Subresultant Theorem

Notation To avoid endlessly repeating the assumptions, in
the rest of this article, we let A and B be in R[X] with
respective degrees m and n; where m � n � 0: Let Sn = B
and Sj = sresj(A;B), for j = n � 1; n � 2, . . . , 0. The
subresultant sequence S(A;B) consists of the polynomials
A; Sn; � � � ; S1; S0:

De�nition 4.1 The jth subresultant Sj is said to be regu-
lar if degSj = j and otherwise Sj is defective. In particular,
the nth subresultant Sn is always regular.

First, we demonstrate the relation between the members
of S(A;B) and subresultants of the two consecutive non-zero
members of S(A;B) in the next lemma.

Lemma 4.1 Let �i = lc(Si), for all i with n � i � 0, �n =

�lc(Sn)
[m�n], and �i = �lc(Si), for all i with n� 1 � i � 0.

If Sj+1 is regular, for some j with n � 1 � j � 0; then the
following hold:

1. If Sj = 0, then Si = 0, for j � 1 � i � 0.

2. If Sj 6= 0 and degSj = r, then

Si = 0; (j � 1 � i � r + 1), (8)

�
[j�r]

j+1 Sr = �
[j�r]

j Sj ; (9)

and

�
[r�i]

j+1 �
[j�i]

j+1 Si = sresi(Sj+1; Sj); (r � 1 � i � 0).

(10)
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Proof The proof will be done by induction on the sequence
of the regular subresultants in S(A;B). As Sn is the �rst
regular subresultant in S(A;B), we start with the case in
which j = n�1: Let i be an integer such that n�2 � i � 0:
By the de�nition of subresultants, we have

Si =j X
n�1�i

A; : : : ; A; X
m�1�i

Sn; : : : ; Sn j :

It then follows from the row-reduction formula (6) that

�
[m�n+1][n�i]
n Si = Ri; (11)

where Ri =j X
m�1�iSn; : : : ; Sn; X

n�1�iSn�1; : : : ; Sn�1 j :
If Sn�1 = 0, then Ri = 0 (n�2 � i � 0), so is Si by (11).

Let degSn�1 = r � 0 and deg
�
Xn�1�iSn�1

�
= d.

If n � 2 � i � r + 1, then Ri = 0 since degSn >
d + 1: Therefore, Si = 0 by (11). If i = r, then Rr =

�
[m�r]
n �

[n�1�r]

n�1 Sn�1 because degSn = d + 1: Hence, (11)

can be rewritten as �
[m�n+1][n�r]
n Sr = �

[m�r]
n �

[n�1�r]
n�1 Sn�1:

Since �
[m�n+1][n�r]
n = �

[m�r]
n �

[n�1�r]
n by Lemma 2.1, (9)

holds for j = n� 1. If r � 1 � i � 0, then

Ri = (�r�i�n)
[m�r]sresi(Sn; Sn�1); (12)

because degSn = d � (r � 1 � i): By (12) and (11), we

get �
[m�n+1][n�i]
n Si = (�r�i�n)

[m�r]sresi(Sn; Sn�1): Since

�
[m�n+1][n�i]
n = �

[r�i]
n (�r�i�n)

[m�r]�
[n�1�i]
n by Lemma 2.1,

(10) holds for j = n� 1. The proof of the base case is done.
We assume that the lemma holds for the regular subre-

sultant Sj+1 and that degSj = r: In other words, the �rst
assertion of the lemma, (8), (9) and (10) hold. If Sj = 0
then there is no regular subresultant that follows Sj . So,
there is nothing to prove. Suppose Sj 6= 0: Then the regu-
lar subresultant next to Sj+1 must be Sr by our induction
hypothesis. Let deg(Sr�1) = t: We have to prove that if
Sr�1 = 0, Si = 0 for r � 2 � i � 0, and that if Sr�1 6= 0,

Si = 0; (r � 2 � i � t+ 1), (13)

�
[r�1�t]
r St = �

[r�1�t]

r�1 Sr�1; (14)

and

�[t�i]
r �[r�1�i]r Si = sresi(Sr; Sr�1); (t� 1 � i � 0). (15)

Before going to induction, we point out two important rela-
tions hiding in (9). Equating the leading coe�cients of both
sides of (9) yields

�
[j�r]

j+1 �r = �
[j�r]

j �j : (16)

Applying � to both sides of this equality, we get

(��j+1)
[j�r]

�r = �
[j�r+1]

j : (17)

Based on the induction hypothesis we claim that

�
[j�i+1]
r �

[r�1�i]
r Si = Ti; (r� 2 � i � 0) , (18)

where

Ti =j X
j�i

Sr; : : : ; Sr; X
r�1�i

Sr�1; : : : ; Sr�1 j : (19)

Proof of the Claim. Observe that (9) and (10) (setting i =

r � 1) imply that

�
[j�r]

j+1 Sr = �
[j�r]

j Sj (20)

and
�j+1�

[j�r+1]

j+1 Sr�1 = sresr�1(Sj+1; Sj): (21)

The induction hypothesis (10) asserts that, for t � i � 0;

�
[r�i]

j+1 �
[j�i]

j+1 Si =j X
r�1�i

Sj+1; : : : ; Sj+1; X
j�i

Sj ; : : : Sj j :

It follows from the above equality, (20), (21), and Lemma 3.1
that riSi = Ti; where

ri =

�
�
[j�r][j�i+1]

j �
[j�r+2][r�i]

j

��
�
[r�i]

j+1 �
[j�i]

j+1

�
�
[j�r][j�i+1]

j+1

�
�
[r�i]

j+1 �
[j�r+1][r�i]

j+1

� :

Note that, in the above deduction, Sj+1, Sj , r, Sr and
Sr�1 play the roles of A, B, n, F , and G in the state-
ment of Lemma 3.1, respectively. It remains to show that

ri = �
[j�i+1]
r �

[r�1�i]
r : Canceling �

[r�i]

j+1 yields

ri =

 
�
[j�r][j�i+1]

j

�
[j�r][j�i+1]

j+1

!
�
[j�r+2][r�i]

j �
[j�i]

j+1

�
[j�r+1][r�i]

j+1

:

The above equality can be simpli�ed by (16) to

ri =

 
�
[j�i+1]
r

�
[j�i+1]

j

!
�
[j�r+2][r�i]

j �
[j�i]

j+1

�
[j�r+1][r�i]

j+1

: (22)

Lemma 2.1 implies

�
[j�r+2][r�i]

j = �
[j�i+1]

j �
[j�r+1][r�1�i]

j

and
�
[j�r+1][r�i]

j+1 = �
[j�i]

j+1 (��j+1)
[j�r][r�1�i]

:

So equation (22) can be further simpli�ed to

ri = �
[j�i+1]
r

 
�
[j�r+1][r�1�i]

j

(��j+1)[j�r][r�1�i]

!
:

It then follows from (17) that ri = �
[j�i+1]
r �

[r�1�i]
r : The

claim is proved.
If Sr�1 = 0, then Ti = 0, (r�2 � i � 0), so is Si by (18).

Assume t � 0 and denote deg
�
Xr�1�iSr�1

�
by d.

If r � 2 � i � t + 1, Ti = 0 since deg(Sr) > d+ 1, so is

Si by (18). If i = t, then Ti = �
[j�t+1]
r �

[r�t�1]
r�1 Sr�1 because

deg(Sr) = d + 1: Hence (18) implies �
[j�t+1]
r �

[r�t�1]
r St =

�
[j�t+1]
r �

[r�t�1]
r�1 Sr�1: Equation (14) follows. If t�1 � i � 0,

then Ti = (�t�i�r)
[j�t+1]sresi(Sr; Sr�1) because degSr =

d� (t� i� 1). Hence (18) implies

�
[j�i+1]
r �

[r�1�i]
r Si = (�t�i�r)

[j�t+1]sresi(Sr; Sr�1): (23)

Observe that Lemma 2.1 implies

�
[j�i+1]
r = �

[(t�i)+(j�t+1)]
r = �

[t�i]
r (�t�i�r)

[j�t+1]
:

Using this relation to remove the like �-factorial expressions
from both sides of (23), we �nd (15). The lemma is proved.
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A
B

. . .
Sj+1 is regular.
Sj is defective of order r.

... Si = 0 (j > i > r).

Sr is regular.
. . .

a regular subresultant
a defective subresultant

... zero subresultants
a regular subresultant

. . .

Figure 1: The gap structure of S(A;B)

Theorem 4.2 (Subresultant Theorem) Let �i = lc(Si);

for i = n, n�1, . . . , 0; �n = �lc(Sn)
[m�n]; and �i = �lc(Si);

for i = n � 1, . . . , 0. If Sj+1 is regular, for some j with
n� 1 � j � 0; and degSj = r, then

1. If Sj = 0, then

Si = 0; (j � 1 � i � 0). (24)

2. If Sj 6= 0, then

Si = 0; (j � 1 � i � r + 1), (25)

�
[j�r]

j+1 Sr = �
[j�r]

j Sj ; (26)

and

�j+1�
[j�r+1]

j+1 Sr�1 = (�1)j�rprem(Sj+1; Sj): (27)

Proof Equations (24), (25), and (26) were proved in
Lemma 4.1. If i = r� 1, (10) in Lemma 4.1 becomes

�j+1(�j+1)
[j�r+1]

Sr�1 = sresr�1(Sj+1; Sj)

Equation (27) then follows from Lemma 2.3.

A \formula-free" version of Theorem 4.2 reads:

Corollary 4.3 Let n � 1 � j � 0: If Sj+1 is regular and
degSj = r; then, for all i with j � 1 � i � r + 1; the
subresultant Si is zero. If, moreover, Sj 6= 0, then Sr is
regular, Sj and Sr are R-linearly dependent, and Sr�1 and
prem(Sj+1; Sj) are R-linearly dependent.

This corollary can be illustrated by the gap structure
of S(A;B) in Figure 1:

5 Subresultant Algorithm

We shall now extend the subresultant sequences of the �rst
and second kinds in [13]), and describe the subresultant al-
gorithm.

De�nition 5.1 The subresultant sequence of A and B of
the �rst kind is the subsequence of S(A;B) that consists of
the following polynomials: A, B, and Sj if Sj+1 is regular
and Sj is nonzero. The subresultant sequence of A and B of
the second kind is the subsequence of S(A;B) that consists
of A; B and the other regular subresultants of S(A;B): We
denote the subresultant sequences of A and B of the �rst
and second kinds by S1(A;B) and S2(A;B); respectively.

The next lemma describes the relation between S1(A;B)
and S2(A;B).

Lemma 5.1 Let S2(A;B) consist of

A; Sn; Sjk ; Sjk�1 ; � � � ; Sj1 ; Sj0 ;

with n > jk > jk�1 > � � � > j0. Then S1(A;B) consists of

A; Sn; Sn�1; Sjk�1; Sjk�1�1; � � � ; Sj1�1:

Proof The sequence H:

A; Sn; Sn�1; Sjk�1; Sjk�1�1; � � � ; Sj1�1;

is a subsequence of S1(A;B) by De�nition 5.1. Notice that
Sj0�1 is zero, for otherwise there would be a regular sub-
resultant Sr with r = degSj0�1, but Sj0 is the last regu-
lar subresultant in S(A;B), a contradiction. Hence all the
subresultants following Sj0 are zero because of (24) in Theo-
rem 4.2. The sequence H is S1(A;B). The lemma is proved.

Let the subresultants Sji+1 and Sji be two consecutive mem-
bers of S2(A;B): Then Corollary 4.3 asserts that the sub-
resultants between Sji+1�1 and Sji are all zero. Hence, all
the non-zero subresultants are contained in either S2(A;B)
or S1(A;B): Accordingly, all the defective subresultants
are contained in S1(A;B): The members of S1(A;B) and
S2(A;B) are R-linearly dependent in order. If there is no
defective subresultant in S(A;B); then both S1(A;B) and
S2(A;B) coincide with S(A;B):

We present the subresultant algorithm in the next theo-
rem, which is an extension of the commutative subresultant
algorithm in [4]. The algorithm computes S1(A;B) without
expanding determinants directly. It proceeds as the Eu-
clidean algorithm but removes an extraneous factor from
the coe�cients in the pseudo-remainder after each pseudo-
division. A byproduct of this algorithm is the leading co-
e�cients of the members of S2(A;B), that is, the leading
coe�cients of all regular subresultants of A and B:

Theorem 5.2 (Subresultant Algorithm)

1. If Sn�1 is nonzero, the third member of S1(A;B) is

Sn�1 = (�1)m�n+1prem(A;B):

2. If Sk is the fourth member of S1(A;B) and l is equal
to (n� degSn�1), then

Sk = prem(B; Sn�1)=e; (28)

where e = (�1)l+1�(lc(B))[m�n][l]lc(B).

3. If Si; Sj and Sk are three consecutive members in
S1(A;B) (n > i > j > k), and l is (degSi � degSj),
then

Sk = prem(Si; Sj)=e; (29)

where e = (�1)l+1�(lc(Sj+1))
[l]lc(Si).
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Proof The �rst assertion is due to Lemma 2.3. The second
assertion follows from (27) in Theorem 4.2 (set j = n� 1).

To prove the last assertion, we let degSi = t and
degSj = r. Since both Si+1 and Sj+1 are regular by the
de�nition of S1(A;B), t = j + 1 by Corollary 4.3. It then
follows from (26) in Theorem 4.2 that

�(lc(Si+1))
[i�t]

Sj+1 = �(lc(Si))
[i�t]

Si: (30)

From this equation we see that

(lc(Si))
[i�t+1]prem(Si; Sj)

= lc(Si)prem(�(lc(Si))
[i�t]

Si; Sj)

= lc(Si)prem(�(lc(Si+1))
[i�t]

Sj+1; Sj)

= lc(Si)�(lc(Si+1))
[i�t]prem(Sj+1; Sj)

= (�1)j�r+2
�(lc(Si+1))

[i�t]lc(Sj+1)lc(Si)

�(lc(Sj+1))
[j+1�r]

Sr�1 (by (27)).

Note that Sr�1 = Sk since Sr is regular. Thus, the theorem
will be proved if

lc(Si)
[i�t+1] = �(lc(Si+1))

[i�t]lc(Sj+1) (31)

holds. Equating the leading coe�cients on both sides of (30)
yields (31). The theorem is proved.

By Theorem 5.2 we can design the subresultant algorithm
for computing S1(A;B). In order to compute Sk from Si
and Sj according to the third assertion of Theorem 5.2, we
need to compute lc(Sj+1). This leading coe�cient can be
obtained recursively from (31).

Corollary 5.3 Both S1(A;B) and S2(A;B) are p.r.s.'s.

Proof S1(A;B) is a p.r.s. by Theorem 5.2. S2(A;B) is a
p.r.s. because each member of S2(A;B) is R-linearly de-
pendent on one (and only one) member of S1(A;B) by
Lemma 5.1.

6 Applications

First, we extend the resultant of two di�erential operators
given in [1, 5].

De�nition 6.1 The subresultant S0 is called Sylvester's re-

sultant of A and B and denoted by res (A;B):

Although the �rst two statements of the following propo-
sition were proved in [8], the proofs given below are much
shorter due to Theorems 4.2 and 5.2.

Proposition 6.1 Let d be the degree of the gcrd of A and
B. Then the following hold.

1. Sd is a gcrd of A and B.

2. d = 0 if and only if res (A;B) 6= 0:

3. UA is an lclm of A and B, where U is the determinant
of order (m+ n� 2d+ 2) whose �rst (m+ n� 2d+ 1)
columns are the �rst (m+ n� 2d+ 1) columns of

mat(Xn�d
A; : : : ; XA;A;X

m�d
B; : : : ; XB;B)

and whose last column is the transpose of the vector

(Xn�d; : : : X; 1; 0; 0; : : : ; 0| {z }
m�d+1

):

Proof Since S2(A;B) is a p.r.s., the last member of
S2(A;B) is a gcrd of A and B. This member is a regu-
lar subresultant, so, it must be Sd. In particular, d = 0 i�
S0 6= 0. The �rst and second assertions are proved.

To prove the last assertion, we �rst show that UA is right
divisible by B. Let M be the matrix whose �rst (m+ n �
2d + 1) columns are the same as those of U , and its last
column is the transpose of the vector

(Xn�d
A; : : : ; XA;A; X

m�d
B; : : : ; XB;B):

Then jM j is zero because jM j = Sd�1 when d > 0, and the
last column of M can be reduced to zero by the previous
columns when d = 0. Expanding jM j according to its last
column yields UA + V B = 0, for some V 2 R[X], that is,
UA is right divisible by B.

By [11, p. 486] the degree of lclm's of A and B is equal
to (m+ n � d). Hence, it su�ces to prove that the degree

of U is equal to (n � d), that is, the cofactor of Xn�d in
the determinant U is nonzero. From the de�nition of U one
sees that this cofactor is the product of ��m�d(lc(B)) and

the coe�cient of Xd in Sd. As Sd is a gcrd of A and B, the
degree of Sd is d. Hence, the cofactor is nonzero.

Example 3 Let D = d
dt
, and let

A = (t� 1)D3 + (�t2 + t)D2 + (�2t+ 3)D � t

and
B = 3D2 + (t3 � 3t)D � t

4
� 3

be in Z[t][D]. By Proposition 6.1, a gcrd of A and B is�����
t� 1 �t2 + t A

3 �3t + t3 DB

0 3 B

����� = (t7 � t
6 + 9� 9t3 + 9t2)(D � t)

and an lclm of A and B is��������
t� 1 �t2 + t+ 1 �4t + 4 �t� 2 D

0 t � 1 �t2 + t �2t+ 3 1

3 �3t+ t3 �9� t4 + 6t2 �8t3 + 6t 0

0 3 �3t+ t3 �6� t4 + 3t2 0

0 0 3 �3t+ t3 0

��������
A:

Remark 1 The determinant formula for gcrd's is a gener-
alization of the corresponding formula for gcd's in [12]. The
determinant formula for lclm's is possibly new. With these
two formulas, one may estimate the coe�cient and degree
bounds for gcrd's and lclm's.

Remark 2 If R is a unique factorization domain, then

�
m�d(lc(B))�n�d(lc(A))lc(Sd)

is a multiple of the leading coe�cient of the primitive lclm
of A and B, because UA is an lclm of A and B and the
leading coe�cient of U is �m�d(lc(B))lc(Sd).

In the rest of this section we study algorithms for com-
puting lclm's. Computing lclm's is not as simple as com-
puting lcm's in the commutative case because of the non-
commutativity of multiplication. One method for comput-
ing lclm's is the extended (right) Euclidean algorithm [3].
Of course, it is su�cient to use the half-extended Euclidean
algorithm, which computes only one co-sequence. If one uses
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the polynomial division over the fraction �eld of R to carry
out the half-extended Euclidean algorithm, the algorithm
is ine�cient because there are too many gcd-computations
among coe�cients. We present a fraction-free version of the
half-extend Euclidean algorithm for computing lclm's, which
reduces coe�cient growth by exact division over R.

For a later convenience we modify our notation. Let
A1 = A, A2 = B and S1(A;B) be the sequence:

A1; A2; A3; : : : ; Ak:

Let U1 = 1 and U2 = 0. If Ai is the jth subresultant of A
and B, then we let Ui be the (m+ n � 2j) � (m+ n � 2j)
determinant whose �rst (m+n�2j�1) column is the same
as those in

mat(Xn�j�1
A; : : : ; A;X

m�j�1
B; : : : ; B):

and whose last column is the transpose of

(Xn�j�1
; : : : X; 1; 0; 0; : : : ; 0| {z }

m�j

):

Note that the index j decreases as the index i increases. The
sequence

U1; U2; U3; : : : ; Uk

is called the �rst co-sequence associated with S1(A;B), be-
cause UiA1 � Aimod A2 for i = 1; 2; : : : ; k, i.e., UiA1 �Ai

is right-divisible by A2. Another property of the �rst co-
sequence is that degUi < (n � degAi), for i = 3; : : :, k,
because degAi � j if Ai is the jth subresultant of A and B.
By Theorem 5.2 we have, for i = 3; 4, . . . , k,

liAi�2 = QiAi�1 + eiAi;

where
li = lc(Ai�1)

[degAi�2�degAi�1+1];

e3 is (�1)m�n+1 and ei is the extraneous factor e removed
in (28) or (29) when we use the subresultant algorithm to
compute Ai.

The next proposition provides a fraction-free version of
the half-extended Euclidean algorithm.

Proposition 6.2 With the notation just introduced, we
have

Ui = (li�1Ui�2 �QiUi�1)=ei (32)

for i = 3; : : : ; k. Furthermore

L = (lkUk�1 �QkUk)A1 (33)

is an lclm of A1 and A2.

Proof Let V1 = U1 and V2 = U2, and let

Vi = (li�1Vi�2 �QiVi�1)=ei; (34)

for i = 3, 4, . . . , k.
Since liAi�2 = QiAi�1 + eiAi; ViA1 � Ai mod A2, for

i = 3; : : : ; k. Now, we prove Ui = Vi, for i = 3, . . . ,
k. Notice that (Ui � Vi)A1 is right divisible by A2, and
that (34) implies deg Vi = (degA2 � degAi�1). Recall
degUi < (degA2 � degAi). We conclude

deg(Ui � Vi) < (degA2 � degAk):

It then follows that Ui � Vi = 0, for otherwise (Ui � Vi)A1

would be a non-zero common left multiple of A1 and A2

with degree less than (degA1+degA2�degAk), the degree
of lclm's of A1 and A2, a contradiction. The formula (32)
holds. Since Ui is in R[X], the division in (32) is exact.

In particular, we have

Uk�1A1 � Ak�1modA2; UkA1 � AkmodA2;

and lkAk�1 = QkAk: Hence L de�ned in (33) is right-
divisible by A2. It remains to show

degL = degA1 + degA2 � degAk:

This follows from the observation that degUk�1 = (degA2�

degAk�2), degUk = (degA2 � degAk�1), and degQk =
(degAk�1 � degAk): The proposition is proved.

We present an experimental comparison among three al-
gorithms (labeled L, S, and M, respectively) for comput-
ing lclm's of two Ore polynomials A and B in R[X], where
degA = m and degB = n. For a matrix H over R, we de-
note by (H) the linear homogeneous system whose matrix
is H. Let M be the matrix

mat(Xn
A; : : : ; A;X

m
B; : : : ; B)

and M� be the transpose of M .
The idea of Algorithm L goes as follows. First, com-

pute a triangular form T of M� by row-reduction. Sec-
ond, extract the submatrix Tr from T whose columns corre-
spond to the polynomials Xn�rA; . . . , A; Xm�rB; : : : ; B,
for r = 1; 2; : : : ;m � n, and decide if (Tr) has a non-trivial
solution. If (r� 1) is the largest index such that (Tr�1) has
only trivial solution, then any nontrivial solution of (Tr)
gives us the lclm. Algorithm L has two time-consuming
costs:

� compute a triangular form of the matrix M� by row
reduction

� Find a linear relation (over R) among the polynomi-
als Xn�rA; . . . , A; Xm�rB; : : : ; B with r as large as
possible.

Algorithm S is given in Proposition 6.2, which has two
time-consuming costs:

� compute S1(A;B) : A1; A2; : : : ; Ak

� compute the 1st co-sequence associated with S1(A;B).

Algorithm M is based on Proposition 6.1, which has two
costs:

� compute the degree of gcrd's of A and B

� expand the determinant U given in Proposition 6.1.

If the gcrd of A and B is trivial, then both Algorithms
L and S compute some triangular forms of the matrices M�

and M , respectively. However, Algorithm S makes use of
the special structure of M and avoids solving any linear
system, although it has the additional cost for computing
the �rst co-sequence. Furthermore, Algorithm S avoids any
gcd-computation inR and controls the growth of coe�cients
by dividing out extraneous factors.
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If the gcrd of A and B is of degree d > 0, then Algorithm
S only needs to compute a triangular form of the matrix

mat(Xn�d
A; : : : ; A;X

m�d
B; : : : ; B):

But Algorithm L still needs to compute a triangular form
of M� .

If the degree of the gcrd of A and B can be computed
e�ciently, then Algorithm M needs only to expand one de-
terminant of order (m+n�2d+2). For example, ifR = Z[t],
then the gcrd of A and B can be computed e�ciently by the
modular method in [8].

We compared the function LCLM in the Maple package
diffop by Mark van Hoeij, which appeared to use the idea
of Algorithm L, with our Maple implementations of Algo-
rithm S and Algorithm M. We generated three random poly-
nomials in Z[t][D], A, B and C, with respective degrees dA,
dB , and dC in X, regarded A, B and C as linear di�erential
operators, and computed the primitive lclm of AC and BC.
In Algorithm M the degree of the gcrd of AC and BC was
computed by the modular algorithm in [8].

Our experiment was carried out in Maple V (Release 3)
on an Alpha-workstation. The random polynomials in the
experiment were generated by the Maple function randpoly.
When dC = 0, we set C = 1. Some of the timings are
summarized in Figure 2, in which the column labeled l gives
the average maximal length of the integral coe�cients of AC
and BC, and the column labeled dt gives the average degree
of AC and BC in the variable t. All the timings are Maple
CPU time and given in seconds.

dA + dC dB + dC dC dt l L S M
5 3 0 4 2 5.9 1.0 1.0
5 3 1 9 6 31.4 2.7 2.6
5 3 2 8 6 52.9 1.0 0.2
5 4 0 4 2 11.2 3.2 3.1
5 4 1 8 6 61.2 8.0 7.8
5 4 2 8 6 82.8 2.3 2.2
5 4 3 9 5 125.2 0.5 0.3
5 5 0 4 2 15.3 5.3 5.1
5 5 1 8 6 100.9 18.1 18.1
5 5 2 8 6 138.2 6.0 6.1
5 5 3 8 5 228.2 2.6 2.2
5 5 4 9 5 314.1 0.7 0.1

Figure 2: Times for computing lclm's

The timings show that Algorithms S and M tend to be
faster than Algorithm L when dC increases. But I think that
the di�erence between Algorithm L and Algorithms M and S
should be smaller when dC is zero, because, in this case, the
most time-consuming computation in the three algorithms
is to triangularize the matrix M . For the time being, my
explanation on this di�erence is that there is about one-third
of computing time of LCLM spent on other costs, since LCLM

works for various coe�cient domains. I expect that better
understanding of the function LCLM in the package diffop,
and functions solve and linsolve in Maple would result in
a clear explanation of the timings, and lead to a better way
of designing experimental data.
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